HZDR	Experiment title:	Experiment number:
ROBL-CRG	XANES Evidences of U(V) Stabilization with Novel 12-fold Coordinational Geometry in Oxo- molybtate Network	20-01-758
Beamline:	Date of experiment:	Date of report:
BM 20	from: 17.06.2015 to: 19.06.2015	20.02.2017
Shifts:	Local contact(s):	Received at ROBL:
4	Marisol janeth Lozano rodriguez (email: janeth.lozano-rodriguez@esrf.fr)	
Names and affiliations of applicants (* indicates experimentalists):		
Bin Xiao ^{†‡*} and Evgeny V. Alekseev ^{†‡}		
[†] Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428		
Jülich, Germany		
[‡] Institut für Kristallographie, RWTH Aachen University, 52066 Aachen, Germany		

Report:

Here we have two polymorphs of uranium molybdates (U-Mo 1 and U-Mo 2), which were isolated from slow evaporation and hydrothermal methods, respectively. Main difference between U-Mo 1 and U-Mo 2 is that the first is assigned to the hexagonal and second belongs to a cubic symmetry crystal. Single-crystal structure analysis shows that both compounds are based on the same clusters with formula $[UMo_{12}O_{48}]$. This cluster consists of one U which is in a very rare twelve-fold coordination environment surrounded by 12 MoO₆ octahedra. Because of such high coordination number, U cannot be in oxidation state of +6, but in +5 or +4.

The XANES experiments were made to confirm the oxidation state of U. The measurements were performed in transmission mode at the Mo K-edge (20000 eV) and the U L₃-edge (17166 eV). The Mo-K XANES spectra of Na₄H₄ (UMo₁₂O₄₂) (H₂O)₆ are shown in Fig. 1a., The MoO₃ (+6) and MoCl₅ (+5) compounds were adopted as oxidation state references. MoO₃ has a distorted octahedral coordination; the presence of a pre-edge peak **A'**, at 20003 eV, is due to the 1s (Mo) \rightarrow 4d (Mo) + 2p (O) transition, as reported in the literature.¹ Such transition is forbidden in the dipole approximation in a perfect octahedral symmetry. However, when the amplitude on the pre-edge peak **A'** arises in an octahedral coordination, it is associated to the MoO₆ octahedron distortion.² This behaviour has been reported early for 3d transition metal compounds, where the most distorted is the octahedral coordination; the intensity in the pre-edge peak is higher.⁴ Both samples U-Mo 1 and U-Mo 2 show a pre-edge peak similar to that of MoO₃. Furthermore, the energy of the inflection points of U-Mo 1

(20013.2 eV) and U-Mo 2 (20013.2 eV), is in line with that of MoO_3 (20013.7 eV). In contrast, the XANES spectrum of MoCl₅, which has also a distorted octahedral coordination, shows only a broad and weak pre-edge peak, which is in agreement with a +5 oxidation state of Mo, leading to a partial filling of the initially empty 4d(Mo)-2p(O) band and a somewhat lower octahedral distortion.⁵

U L₃ XANES spectra of samples U-Mo 1 and U-Mo 2 are shown along with those of UO₂ and NaUO₃ references previously published (Fig. 1b).⁶ Their corresponding edge and white line positions are given in Table 1. The white line positions of U-Mo 1 and U-Mo 2 (~17175 eV (peak **A**)) are similar to that of the UO₂ reference compound. The position of the peak **B** at ~ 17214 eV shifts, however, towards lower energy with the contraction of the U-Mo (~ 2.48 Å) distances in U-Mo 1 and U-Mo 2, according to their atomic arrangement in the cluster, ⁷ comparing with those of U-U (~ 3.87 Å) in UO₂. The oxidation state +5 can be excluded, since it would give raise to a main peak **D** with a low energy shoulder **C** as shown by the XANES spectra of KUO₃ and NaUO₃.^{8,9} Finally, hexavalent U can also be excluded, since it would give rise to a shoulder ~15 eV after the white line peak.¹⁰

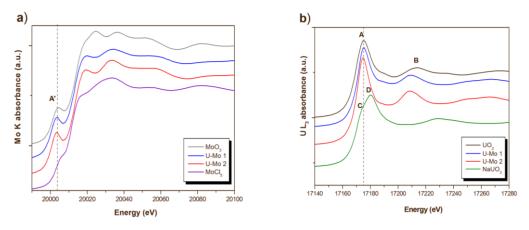


Fig. 1 Mo K XANES and U L₃ spectra

References

- (1) Cramer S. P.; Hodgson K. O.; Gillum W. O.; Mortenson L. E. J. Am. Chem. Soc. 1978, 100, 3398.
- (2) Kuzmin A.; Purans J. J. Phys. Condens. Matter 2000, 12, 1959.
- (3) Ohler, N.; Bell, A. T. J. Phys. Chem. B 2005, 109, 23419
- (4) Wu, Z.; Xian, D. C.; Natoli, C. R.; Marcelli, A.; Paris, E.; Mottana, A. Appl. Phys. Lett. 2001, 79.
- (5) Kuzmin, A.; Purans, J.; Parent, P.; Dexpert, H. Journal Phys. IV, 1997, 7, C2–C891 C2–C892.
- (6) Miyake C.; Kanamaru M.; Anada H.; Imoto S.; Kawano S. J. Nucl. Sci. Technol. 1985, 22, 653.

(7) Bianconi, A.; Inoccia, L.; Stipcich, S. *EXAFS and Near Edge Structure: Proceedings of the International Conference*; Springer-Verlag, **1983**.

(8) Soldatov, A. V.; Lamoen, D.; Konstantinović, M. J.; Van den Berghe, S.; Scheinost, A. C.; Verwerft, M.. *J. Solid State Chem.*, **2007**, *180*, 54.

(9) Smith, A. L.; Raison, P. E.; Martel, L.; Charpentier, T.; Farnan, I.; Prieur, D.; Hennig, C.; Scheinost, A. C.; Konings, R. J. M.; Cheetham, A. K.. *Inorg. Chem.*, **2014**, *53*, 375.

(10) Den Auwer, C.; Simoni, É.; Conradson, S. D.; Mustre de Leon, J.; Moisy, P.; Béres, A.. *C.R. Acad. Sci. II C Chem*, **2000**, *3*, 327.