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Report: 

 
Here we have two polymorphs of uranium molybdates (U-Mo 1 and U-Mo 2), which were isolated 

from slow evaporation and hydrothermal methods, respectively. Main difference between U-Mo 1 and 

U-Mo 2 is that the first is assigned to the hexagonal and second belongs to a cubic symmetry crystal. 

Single-crystal structure analysis shows that both compounds are based on the same clusters with 

formula [UMo12O48]. This cluster consists of one U which is in a very rare twelve-fold coordination 

environment surrounded by 12 MoO6 octahedra. Because of such high coordination number, U cannot 

be in oxidation state of +6, but in +5 or +4.  

 

The XANES experiments were made to confirm the oxidation state of U. The measurements were 

performed in transmission mode at the Mo K-edge (20000 eV) and the U L3-edge (17166 eV). The 

Mo-K XANES spectra of Na4H4 (UMo12O42) (H2O) 6 are shown in Fig. 1a., The MoO3 (+6) and MoCl5 

(+5) compounds were adopted as oxidation state references. MoO3 has a distorted octahedral 

coordination; the presence of a pre-edge peak A’, at 20003 eV, is due to the 1s (Mo) → 4d (Mo) + 2p 

(O) transition, as reported in the literature.
1
 Such transition is forbidden in the dipole approximation in 

a perfect octahedral symmetry. However, when the amplitude on the pre-edge peak A’ arises in an 

octahedral coordination, it is associated to the MoO6 octahedron distortion.
2
 This behaviour has been 

reported early for 3d transition metal compounds, where the most distorted is the octahedral 

coordination; the intensity in the pre-edge peak is higher.
4
 Both samples U-Mo 1 and U-Mo 2 show a 

pre-edge peak similar to that of MoO3. Furthermore, the energy of the inflection points of U-Mo 1 



 

(20013.2 eV) and U-Mo 2 (20013.2 eV), is in line with that of MoO3 (20013.7 eV). In contrast, the 

XANES spectrum of MoCl5, which has also a distorted octahedral coordination, shows only a broad 

and weak pre-edge peak, which is in agreement with a +5 oxidation state of Mo, leading to a partial 

filling of the initially empty 4d(Mo)-2p(O) band and a somewhat lower octahedral distortion.
5
 

 

U L3 XANES spectra of samples U-Mo 1 and U-Mo 2 are shown along with those of UO2 and NaUO3 

references previously published (Fig. 1b).
6
 Their corresponding edge and white line positions are given 

in Table 1. The white line positions of U-Mo 1 and U-Mo 2 (~17175 eV (peak A)) are similar to that of 

the UO2 reference compound. The position of the peak B at ~ 17214 eV shifts, however, towards lower 

energy with the contraction of the U-Mo (~ 2.48 Å) distances in U-Mo 1 and U-Mo 2, according to 

their atomic arrangement in the cluster, 
7
 comparing with those of U-U (~ 3.87 Å) in UO2. The 

oxidation state +5 can be excluded, since it would give raise to a main peak D with a low energy 

shoulder C as shown by the XANES spectra of KUO3 and NaUO3.
8,9

 Finally, hexavalent U can also be 

excluded, since it would give rise to a shoulder ~15 eV after the white line peak. 
10

 
 

 

 

  

Fig. 1 Mo K XANES and U L3 spectra 
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