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Report: 
During the current scheduling period, our research group was awarded time for three different proposals:  

March 2016 (20 Shifts/18 requested): CH- 4749, “Probing the Activation of Dioxygen by Iron K-beta 
XES” 

July 2016 (18 Shifts requested/9 Shifts awarded): CH-4748, “Employing VtC RXES to understand 
methane oxidation in Nature”  

July 2016 (9 shifts): CH-4750, “Characterization of Intermediates in Biological Methane to Methanol 
Conversion” 

As all three awarded beamtimes relate, we employed the earlier March beamtime to complete primary 
feasibility studies of our proposed experiments (some portions of the projects were completed in March).  
This allowed for better beamtime and resource management for two consecutive 9-shift beamtimes awarded 
in July.  This report highlights one-half of the July beamtime (CH-4748) 
July 2016 Results: EXAFS 
 During the previous beamtime (March 2016), we were able to complete Kα HERFD XAS and 
Valence-to-Core XES studies of several biomimetic complexes of various diiron ‘oxo’ core confirmations 
and oxidation states, (Schemes 1 and 2). Preliminary analysis of these spectra has yielded insight into the 
mechanisms of pre-edge intensity trends of diiron oxo cores and has been reported previously (see report for 
CH-4749).  To further structurally characterize these complexes, EXAFS was collected (complexes 1-3) 
during this beamtime, and will be utilized to confirm the oxygen core confirmations, along with resonance 
Raman vibrational spectroscopy. 
 Without any rebinning of the EXAFS data, or smoothing, the µ(E) spectra are of good quality up to k 
of approximately 11.  The R-space spectra (FT from k = 2 -11), Figure 2, reveals significant core 
confirmation changes between 5, 6 and 7.  The Fe-Fe vector has been primarily modeled at approximately 3.5 
Å in complexes 5 and 6, consistent with a Fe-µ-O-Fe core.  The Fe-Fe scattering shell is observed at lower R 
in complex 7, modeled at Fe-Fe = 3.0 Å.  This is consistent with the formation of a Fe-(µ-O)2-Fe core.   
 
 



Kα HEFRD 
 The study of complexes 1 – 4 was restricted to Kα HERFD XAS only.  Quantum mechanical 
chemistry computations previously predicted differing pre-edge XAS spectra for closed and open cores ([1, 
2] vs. [3, 4]).  Our collaborators were unable to provide each of the complexes at high enough purity to 
complete the proposed VtC RXES study in the allotted time.  Because each sample contained a maximum of 
50% of the desired product, the other diiron species must be studied and subtracted from the sample spectra 
to yield ‘deconvoluted’ spectrum.  As many as four components make up the sample spectrum: the desired 
product, precursor material, diiron(III) decay species, and a diiron(III) contaminant.  For each sample, the 
sample product was studied along with its unreacted precursor material, decay product, and the suspected 
diiron(III) contaminant.  The quantity of each diiron species was determined by Mössbauer spectroscopy 
prior to X-ray studies, allowing for quantitative subtraction of each undesired component. 
 Figure 2, top, exhibits a raw sample set of four Kα-HERFD XAS spectra that was collected for a 
single complex.  Because of the increased number of samples to be studied, the experiment was restricted to 
XAS only.  During this beamtime, a reliable, complete set of data for these samples was collected along with 
secondary characterization (i.e. Mössbauer and UV/vis spectroscopy).   
 The processed data of complexes 2 and 3 serve as excellent models for the proposed ‘closed’ and 
‘open’ cores of the diiron(IV) ‘Q’ intermediate of Soluble Methane Monooxygenase (sMMO).  Comparing 
the pre-edge spectra of sMMO-Q (collected previously) to the newly collected, processed, spectra of 2 and 3, 
insight into Q’s core confirmation is gained, Figure 2, bottom.  The closed core, 2, has significantly less pre-
edge intensity than Q.  The diiron(IV) open core model, 3, better resembles Q, supporting the presence of an 
terminal oxo group, however, this result is at odds with recent transient resonance Raman measurements that 
proposed a closed core of high symmetry.  The convergence of these high-quality spectra with the high-
quality data obtained on the active intermediate of sMMO will allow us to determine its core active site 
geometry and structure.  We are currently perusing computational studies of these models and the proposed 
active site of sMMO to further understand the spectroscopic results and the electronic structure of these 
diiron cores. As several different systems have been studied during this beamtime and the related beamtimes 
detailed above, we are in the midst of preparing multiple manuscripts for publication in high-impact peer-
reviewed chemistry journals.  
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Figure 1.  EXAFS of 5, 6 and 7.  FT from k 
= 2 – 11.  Vertical lines mark Fe-Fe 
scattering feature. 

ß Figure 2. 
(top) 
Kα HERFD pre-
edge of 3 with 
isolated 
precursor, decay 
and diiron(III) 
contaminant. 
 
(bottom) 
Comparisons of 
2 and 3 (post-
subtraction) with 
sMMO-Q 
 


