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Report: 
During the allotted beam time reported herein, High-Energy Resolution Fluorescence 

Detected (HERFD) EXAFS of several catalytic states of soluble methane monooxygenase 
(sMMO).  A previous EXAFS study of the key sMMO Q intermediate assigned an extremely 
short 2.46 Å Fe-Fe distance do the diiron active site.  This distance has not been reproduced 
synthetically or computationally.  The controversially short Fe-Fe distance has not been 
revisited in nearly 20 years, and has long been suspected to be metallic iron (α-Fe) as the 
published FT EXAFS spectrum has features that strongly resemble that of α-Fe. 

Rapid-freeze quenched samples of sMMO are comprised of three states: the diiron(II) 
reduced state, the diiron(III) oxidized state and the diiron(IV) Q intermediate of interest, 
Figure 1.  Quantification of each state within the trapped samples was performed prior to X-
ray analysis by Mössbauer spectroscopy and samples contained an average of 30% Q. We 
initially set out to employ iron Kβ detected EXAFS for spin-state selectivity to inherit shifts 
in the Kβ mainline energies.  During this beamtime, the Kβ mainline emissions of sMMO 
red, ox, and Q were collected for the first time.  Both of the sMMO red and ox mainlines are 
fairly typically for Fe(II) and Fe(III) high-spin centers. It is known from Mössbauer 
spectroscopic studies that Q is an antiferromagnetically coupled diiron(IV) center, however, 
the local spin states (either Sloc = 1 or 2) have not been conclusively determined.  The Kβ 
mainline of Q remarkably resembles the emission spectrum of a S = 1, Fe(IV) oxo model 
complex previously studied, particillary in the intensity of the Kβ` feature (Figure 2), an 
indication of intermediate spin.   

For the case of sMMO, it was unfortunately observed that the shifts in the Kβ emission 
features were less than desirable and significantly less than the separation of spin-states 
exhibits in ‘proof of principle’ EXAFS experiments. Due to the decreased fluorescent count 
at the Kβ emission energy, we opted to forgo spin-state selectivity and ultilize HERFD 
detection of the EXAFS at the Kα emission energy. One frequently overlooked advantage of 



performing Kα HERFD XAS with a Johann spectrometer is high spatial resolution of the 
sample.  Background floursecent events arising from metal within the experimental setup (i.e. 
cryostat walls, windows, shutters, etc) are eliminated as the fluorescence from these points in 
space will hit the analyzer crystals of the spectrometer at a different angle than fluorescence 
from the same and therefore will not be reflected and detected.  Because of the HERFD 
detection employed here, the EXAFS data collected is thought to free of containment 
fluorescence.   

XANES spectra of the various sMMO samples are consistent with previous findings, 
including the high-energy edge for the diiron(IV) Q intermediate and increased pre-edge area 
(See ESRF CH-4570, 4417 and 3908).  Immediate examination of the Kα HERFD EXAFS 
of sMMO Q exhibits no 2.46 Å Fe-Fe scatterer.  Fitting of sMMO red and ox based on their 
crystallographic structures is possible.  The diiron distance fit in each is consistent with the 
crystal structures, and it FT EXAFS is fit more than satisfactory with only first shell O/N 
scatterers, the Fe-Fe scattering path and a necessary group second shell carbon scatterers (See 
Figure 3 and Table 1).  The EXAFS sample of Q is modeled as mixture of three diiron 
species, utilizing the scattering paths and fits for sMMO red and ox as standards within the fit 
at their predetermined amplitude.   The component of the EXAFS corresponding to Q is best 
fit with a long diiron distance (3.4 Å), indicative of an open core structure.  This finding 
reverses the previous core model proposed and corrects a potentially flawed EXAFS 
measurement. 

 
 
 
 
 
 
 
 

Figure 2.  Kβ mainline emission 
spectra of sMMO intermediates and a 
Fe(IV), S = 1 model complex 
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Fig 1. Proposed catalytic cycle of 
sMMO. The proposed structures of 
Q (in square brackets), which 
immediately precedes methane 
binding and oxidation. Closed and 
open (top and bottom, respectively) 
cores are shown. 
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Figure 3.  FT EXAFS of 
sMMO-ox, red and Q 
(black) and fits (red). 
 

N Atom R (Å) +/–  σ2 (Å2) +/–  

R
ed

 5
0%

 5 O/N 2.0809 0.0165 0.0115 0.0014 
5 C 3.0313 0.0370 0.0060 0.0042 
1 Fe 3.2505 0.0311 0.0033 0.0028 

ΔE0: -2.672 

O
x 

20
%

 

1 O 1.8604 0.0509 0.0020 0.0040 
4 O/N 2.0415 0.0258 0.0049 0.0028 
5 C 2.9365 0.1023 0.0194 0.0108 
1 Fe 2.9922 0.0234 0.0025 0.0017 

ΔE0: -3.314 

Q
 3

0%
 5 O/N 2.0814 0.0572 0.0244 0.0072 

5 C 3.2505 0.1085 0.0121 0.0135 
1 Fe 3.4121 0.0500 0.0018 0.0042 

ΔE0: 8.004 R: 0.0343 

Table 1. EXAFS fit parameters of Q 
 


