ESRF	Experiment title: Investigation of the structure of iron- carbide/iron-oxide core-shell nanoparticles with additional carbon shells for magnetic hyperthermia	Experiment number: MD-1068		
Beamline:	Date of experiment:	Date of report:		
BM23	from: 25 Oct 2017 to: 28 Oct 2017	27 Feb 2018		
Shifts:	Local contact(s):	Received at ESRF:		
9	Olivier Mathon (email: mathon@esrf.fr)			
Names and affiliations of applicants (* indicates experimentalists):				
Professor Lusegen Bugaev, Dr Vasiliy Pryadchenko, Dr Leon Avakyan Southern federal University, Rostov-on-Don, Russia				

Report:

The two series of iron/iron oxide (R-samples) and iron/iron carbide (A-samples) nanopartilees with additional carbon shell were synthesized and studied by XAS (XANES and EXAFS) experiemnts at BM23. The variation of conditions of pyrolysis should allow to vary the ratio of iron oxide (carbide) and metal iron in the nanoparticles. Indeed, the spectra show distinguishable differencies between samples, as it illustrated on Figures 1 and 2. However, the changes are not monotonic. The fourier-transforms of EXAFS functions are not monotonically either, but this can be caused by interference between contributions from different states of iron. The evidence can be shown by simple FT analysis of EXAFS using two scattering contributions Fe-light atom (O or C) and Fe-Fe presented in Tables 1 and 2.

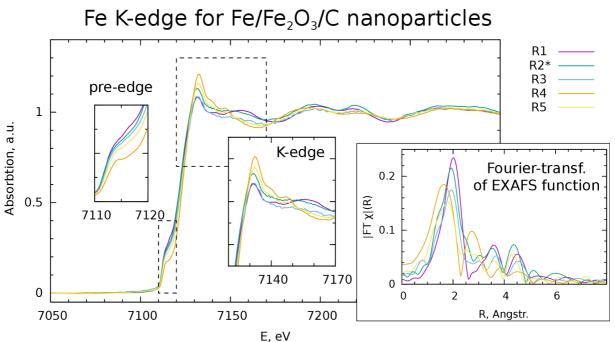


Figure 1. Measured experimental spectra of iron/iron oxide (R-samples) nanoparticles.

Experiment title: Investigation of the structure of ironcarbide/iron-oxide core-shell nanoparticles with additional carbon shells for magnetic hyperthermia Experiment number: MD-1068

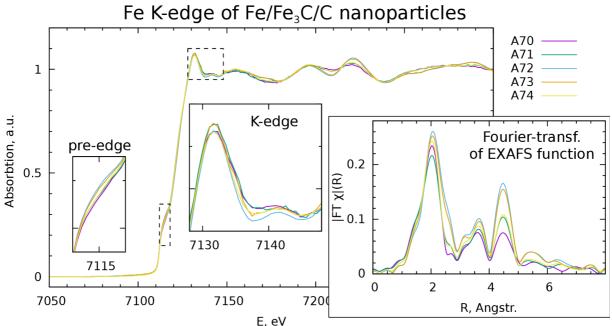


Figure 2. Measured experimental spectra of iron/iron carbide (A-samples) nanoparticles.

	and of mem	<u>501 L70 H</u>			nopurcieres	09 100 5110	II III IIIOdel
Sample	N(Fe-O)	R(Fe-O)	σ^2 (Fe-O)	N(Fe-Fe)	R(Fe-Fe)	σ^2 (Fe-Fe)	χ_{ν}^{2}
R1 (Fe/C)	1.0	1.84	0.0040	7.4	2.45	0.0078	600
R3	1.3	1.81	0.0040	4.3	2.42	0.0047	100
R4	2.3	2.01	0.0084	5.1	2.58	0.0040	700
R5	3.7	3.2	0.0040	3.7	2.62	0.0063	60
R2* (Fe ₂ O ₃ /C)	5.1	1.92	0.0130	5.1	2.49	0.0040	200

	a — — a · · · · ·		
Table 1. Results of fitting	of EVAES of iron/iron	ovida nononarticlas	by two shall fit model
Table T. Results of fitting	UI LAAFS UI IIUII/IIUI		

Table 2. Results of fitting of EXAFS of iron/iron carbide nanoparticles by two shell fit model

Sample	N(Fe-C)	R(Fe-C)	σ^2 (Fe-C)	N(Fe-Fe)	R(Fe-Fe)	σ ² (Fe-Fe)	χ_{ν}^{2}
A70 (Fe/C)	-	-	-	5.6	2.42	0.0048	400
A71	1.9	1.89	0.0040	4.8	2.44	0.0040	300
A72	4.4	2.00	0.0088	5.7	2.51	0.0040	>999
A73 (Fe ₃ C/C)	4.7	1.97	0.0105	5.5	2.49	0.0040	>999
A74	1.6	1.88	0.0040	5.3	2.44	0.0040	900

The poor overall fitting quality indicates on the insufficience of used two shell fit model. This model should be improvaed by addition of more distant coordination shells of structures of bulk iron, iron oxide and iron carbides. Nevertheless, the results for the samples R1, R3, A70 and A71 shows their similarity to pure iron nanoparticle, as it was supposed by synthesis. Other samples, obtained as a result of more intensive pyrolisis, demonstrate more complex local atomic structure, which can be understood using more detailed model and using application of complimentary theoretical and experimental techniques.