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Report:  High-Energy Resolution Fluorescence Detected (HERFD) XANES of a series of 
reduced forms of Mo nitrogenase (N2ase) were measured during the allotted beam time 
reported herein.  Previous 57Fe Mössbauer studies found that a distinctly different reduced state 
MI was generated in Mo N2ase upon cryoreduction compared to that observed during native 
turnover (MR).  It was proposed this difference arises from reduction at the Fe-centers of the 
catalytic FeMoco cluster under cryoreducing conditions, whereas the Mo of FeMoco was 
reduced under native conditions.  At the time of this study, the oxidation state of Mo in the 
FeMoco was believed to be Mo(IV), and the suggestion of reducing to Mo(IV) to Mo(III) in a 
biological system was quite reasonable.  Since then, the oxidation state of Mo has been 
reassigned as Mo(III), and as the reduction of Mo(III) to Mo(II) is highly unfavorable under 
most biological conditions it is clear the question of oxidation state distribution in MI and MR 
must be revisited. 
 Activation of N2 by Mo N2ase is accomplished through the subsequent transfer 8e- and 
8H+; to bind N2, 4e- and 4H+ must first be stored on the FeMoco cluster of the MoFe protein 
(Figure 1).  At any step beyond E2, H2 may be produced, meaning that e- and H+ must be 
rapidly pushed onto the cluster at a rate greater than H2 production from the E2, E3, and E4 
steps.  This is accomplished through a crowding mechanism with the second component of the 
N2ase system, a reducing Fe protein (FeP).  This also implies that under native turnover in the 
absence of N2, there is always a distribution of E0 → E4 states which is dependent upon the 
ratio of FeP:MoFe.  At low ratios of FeP:MoFe, only the E0, E1, and E2 can be accessed, and 
this can be tuned to generate favorable amounts of E1. Cryoreduction allows a more selective 
reduction of the FeMoco cluster through controlled doses of radiation, allowing an even more 
restricted distribution i.e. only E0 & E1 to be generated. The amount of E0 state has an S=3/2 
ground state, allowing it to be quantified easily by electron paramagnetic resonance (EPR).  
Cryoreduced samples were generated at 40-50% E1, and native samples of ~30% E1 were 
produced. 



 We initially set out to employ Mo and Fe Kα-HERFD XANES to observe where 
oxidation state changes occur under cryoreducing and native turnover conditions, and compare 
these to both one another and to the resting state.  During this time, the Kα-HERFD of Mo 
N2ase under reducing conditions was measured at both Fe and Mo for the first time.  It was 
found that no significant changes occur at Mo, disproving the original hypothesis that a Mo-
centered reduction occurs under native turnover (Figure 2).  Additionally, an increase in the 
Fe white line was observed, which is consistent with some of our previous observations for 
reduction in iron-sulfur clusters.  However, the observed changes in the white line and rising 
edge in are very, very minute (Figures 3,4).  Comparing these results to previous data we have 
collected on model complexes (1), the differences are consistent with what one would expect 
after accounting for iron concentrations, but unfortunately are still statistically insignificant 
despite extensive data collection.  Further investigations are underway to elucidate these 
changes at Fe through 57Fe Mössbauer spectroscopy, and we look to continue these studies 
using 57Fe NIS, Fe K-β XES, and  Fe K-β  HERFD XAS techniques. 
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Figure 2. Mo K-α HERFD XAS of a series of Mo N2ase 
samples. CEC Resting and Resting are resting state MoFe from 
two separate sources. Native 1:2 corresponds to a 1:2 FeP:MoFe 
protein ratio.  Cryoreduced samples were produced at 3 mega 
rad (mR) and 6 mR, and the 3 mR sample annealed at 200 K to 
allow for proton transfer. 
 

Figure 1.  The catalytic cycle of FeMoco in Mo N2ase.  
 

Figure 4.  Comparison of Fe Kα-HERFD spectra for 
resting, 3 mR, 6 mR, and annealed 3mR samples at 200 and 
235 K of Mo N2ase.  mR = mega rad. 
 

Figure 3.  Comparison of resting, 3mR, and 6mR Fe Kα-
HERFD spectra as both a) absorption, and b) difference 
spectra.  Standard deviations are included in both a) and b).  
 


