ESRF	Experiment title: Study of beta relaxation in o-terphenyl by very high resolution inelastic x-ray scattering	Experiment number: HS-203
Beamline: $\mathrm{BL} 21-\mathrm{ID} 16$	Date of experiment: from: 26/04/97 to: 03/05/97	Date of report: 27/08/97
Shifts: 21	Local contact(s): F. Sette	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):
C. Masciovecchio, ESRF, BP 220 F-38043 Grenoble, Cedex France
G. Monaco, University of L'Aquila, I-67100 L'Aquila, Italy
M. Soltwisch, Freie Universitat Berlin, D-14195 Berlin, Germany

Report:

The dynamic structure factors of two glass former: o-terphenyl and glycerol have been measured at different temperatures T and momentum exchanged Q using inelastic x-ray scattering with very high resolving power. We have found propagating excitations in both liquid and glass phases as can be seen in Fig. 1 for glycerol. This result shows that the dynamics at high firequency is the continuation of the acoustic branch detected with ultrasounds and Brillouin light scattering techniques.

The measured excitation energy at fixed exchanged momentum shows a cusp like behavior at a temperature inferred to be higher than the macroscopic structural arrest temperature $T_{\boldsymbol{g}}$ (usually called the calorimetric glass transition temperature). In Fig. 2 is reported such a result for the two samples. The indicated temperature $T_{\boldsymbol{x}}$ is the temperature at which we observe a change in slope of the sidebands peak position. This result suggest that the structural arrest take place at the molecular scale at temperatures higher than for macroscopic diffusion.

Using the $\mathrm{Q} \rightarrow 0$ limit of few dispersion curves we have developed a scheme to extract the infinite frequency speed of sound velocity $\mathrm{C},(\mathrm{T})$ for glycerol. The derived values of $C_{\infty}(T)$ are in disagreement with previous determinations obtained by extrapolating low frequency data. In Fig. 3 are reported measurements of the speed of sound performed by Brillouin light scattering (BLS) and inelastic x-ray scattering (IXS). Two low frequency extrapolation of the infinite frequency speed of sound are also reponed in the figure (EXTRI and EXTR2). The results shown have been subject of three different papers [I, 2,3].
[1] C. Masciovecchio et al., accepted on Phys. Rev. Len.
[2] C. Masciovecchio et al., accepted on Phyl. Mag.
[3] G. Monaco et al.. in preparation

Fig. 1-LXS spectra of glycerol taken above and below the calorimetric glass transition temperature (186 K).

Fig. 2 - Inelastic peak position as function of temperature.

Fig. 3 - Speed of sound of glycerol measured by BLS and IXS.

