
ESRF	Experiment title: Operando SXRD study of the phase transformation in olivine-based cathode materials for Li-ion batteries at superfast (10C-60C) charge regimes	Experiment number : MA 4030
Beamline:	Date of experiment:	Date of report:
ID11	from: 06 June 2018 to: 10 June 2018	25 September 2018
Shifts:	Local contact(s):	Received at ESRF:
12	Carlotta Giacobbe	
Names and affiliations of applicants (* indicates experimentalists):		
Dr. Drazhzhin Olack, Lamanagay Magagy State University: Skalkova Institute of Science		

Dr. Drozhzhin Oleg*, Lomonosov Moscow State University; Skolkovo Institute of Science and Technology, Moscow, Russia

Dr. Alekseeva Anastasia*, Lomonosov Moscow State University, Moscow, Russia

Tereshchenko Ivan*, Lomonosov Moscow State University; Skolkovo Institute of Science and Technology, Moscow, Russia

Report:

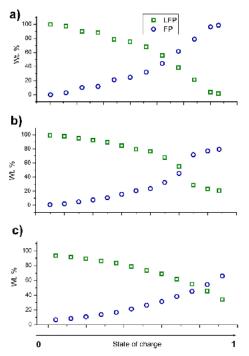


Figure 1. Charge (at C/3, 10C, 30C rates) and discharge (at C/3 rate) curves for LiFePO₄.

operando regime. Acquisition time 3 s for each pattern. Dependence of the capacity and charge-discharge curves on charge rate for LiFePO₄ cahode material is presented in Figure 1. Reversible electrochemical specific capacity reaches \approx 150, 140 and 130 mAh/g for C/3, 10C and 30C charge rates, correspondingly (C/3 corresponds to full charge for 3 h, 10C – for 6 min, 30C – for 2 min).

Results of the Rietveld refiniment for selected patterns of the abovementioned experiments are presented im Figure 2 and 3. The following conclusions could be made:

a) Two-phase transition behaviour is typical for LiFePO₄ at all studied charge rates. Li-rich phase (denoted as LFP) and Li-poor phase (FP) present in the whole range of states of charge (SOC) during Li^+ deintercalation.

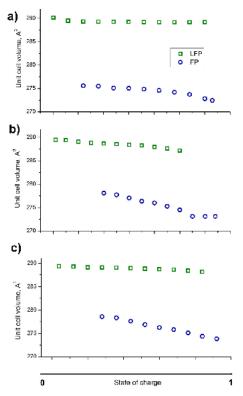


Figure 2. Mass ratio of Li-rich (LFP) and Lipoor (FP) phases during Li^+ deintercalation at C/3 (a), 10C (b) and 30C (c) rates for LiFePO₄

We studied three olivine-type materials: LiFePO₄,

LiFe_{0.5}Mn_{0.5}PO₄ and LiFe_{0.25}Mn_{0.75}PO₄. For analysing phase transformation behavior at different charge rate, we performed the following experiments: a) charge and discharge at C/3 rate (all studied materials), b) charge at 10C and discharge at C/3 rate (LiFePO₄,

LiFe_{0.5}Mn_{0.5}PO₄), c) charge at 30C and discharge at C/3 rate (LiFePO₄). X-ray diffraction patterns were collected in

Figure 3. Unit cell volume of Li-rich (LFP) and Li-poor (FP) phases during Li^+ deintercalation at C/3 (a), 10C (b) and 30C (c) rates for LiFePO₄

b) LFP/FP mass ratio changes non-linearly during charge. Non-linearity increases with charge rate.

c) Variation of unit cell parameters of the both LFP and FP phases increases with charge rate. It reduces the volume misfit between Lirich and Li-poor phases. At C/3 rate, a difference of 4.8% is observed at the beginning of FP phase formation. At 30C the difference is 3.4%. High rate of Li⁺ extraction leads to "smothing" of the phase transformation mechanism. However, we did not observe complete transition to solid solution-type reaction.

In case of LiFe_{0.5}Mn_{0.5}PO₄ cathode material, charge at C/3 and 10C rates provides \approx 140 and 110 mAh/g discharge capacity (Fig. 4). In fact, such behavior eliminates advantage of Mn-substituted olivines (high average potential and therefore enhanced energy densuty) at high charge rates. Hovewer, an interesting feature of the

This feature gives a hope of

succesful application of Mn-

substituted olivines as high

optimisation of the particle

However, LiFe_{0.25}Mn_{0.75}PO₄

sample exhibits much worse

behavior at elevated charge

rates: less than 40% of its

(Fig. 6). One of the possible

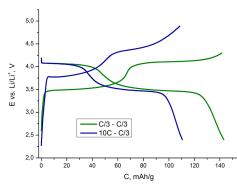
electrochemical properties

between initial and charged

LiFe_{0.25}Mn_{0.75}PO₄ vs. 6.4%

is large volume change

states (Fig. 7): 8.4% for


for LiFe_{0.5}Mn_{0.5}PO₄ and

reasons of such poor

charge rate cathodes after

composite conductivity.

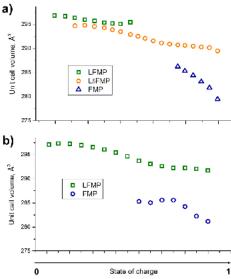

size and electrode

Figure 4. Charge (at C/3, 10C rates) and discharge (at C/3 rate) curves for LiFe_{0.5}Mn_{0.5}PO₄.

 $LiFe_{0.5}Mn_{0.5}PO_4$ cathode material is swithing from 3-phase to 2-phase reaction (Fig. 5) at elevated charge rates. As in the case of

LiFePO₄, high rate of Li deintercalation leads to smoothing of the phase transformations: Li-rich and intermediate phases "split" into one with prolongated region of solid solution $Li_{1-x}Fe_{0.5}Mn_{0.5}PO_4$.

Figure 5. Unit cell volume of Li-rich (LFMP), intermediate (L δ FMP) and Li-poor (FMP) phases during Li⁺ deintercalation at C/3 (a) and 10C (b) rates for LiFe_{0.5}Mn_{0.5}PO₄.

6.1% for LiFePO₄.

As a brief conclusion, we may assume that increasing charge rate in olivines leads to smoothing of the volume misfit and increase of the solid solution regions of the Li-rich and Li-poor phases. However, complete transition to single-phase behavior was not observed even at 30C current density. LiFePO₄ exhibits the best ability of fast

5,0 4,5 4,0 E vs. Li/Li^{*}, V 3.5 3,0 10C - C/3 2.5 2.0 20 40 80 100 120 140 160 60 C, mAh/g

Figure 6. Charge (at C/3, 10C rates) and discharge (at C/3 rate) curves for LiFe_{0.25}Mn_{0.75}PO₄.

nominal capacity was retained after charge at 10C current density

Figure 7. Unit cell volume of Li-rich (LF25M75P), intermediate (L δ F25M75P) and Li-poor (F25M75P) phases during Li⁺ deintercalation at C/3 rate for LiFe_{0.25}Mn_{0.75}PO₄.

charging. Increase in Mn content requires optimisation of the synthetic and electrode fabrication conditions.