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Report: 
Introduction: The aim of this project is to investigate the molecular basis of heart regulation. In previous 
visits we showed that in the heart as in the skeletal muscle (1) a dual filament mechanism of regulation of 
contraction operates: the canonical Ca2+-dependent thin filament activation, making the actin sites available 
for binding of the myosin motors, and the mechano-sensing in the thick filament (2), acting as a downstream 
mechanism that adapts to the load the recruitment of the myosin motors from their OFF state, in which they 
lie on the surface of the thick filament unable to bind actin and split ATP (3, 4). In a heartbeat, unlike during 
skeletal muscle tetanic contraction, the rise of internal [Ca2+] is transient and may not reach the level for full 
thin filament activation, thus the mechanical response depends on both the intracellular [Ca2+] and the 
sensitivity of the thin filament to calcium (5,6), parameters that are under the control of several regulatory 
mechanisms like the increase in sarcomere length (SL) (Length Dependent Activation, which is the cellular 
basis of the Starling Law of the heart (7)) and the phosphorylation of contractile, regulatory, and cytoskeletal 
proteins (8,9). Previous work on demembranated preparations suggested that increase of SL and degree of 
phosphorylation of the Myosin Binding Protein-C (MyBP-C), an accessory protein that lies on the thick 
filament and can bind the thin filament with its N-terminus, can alter the regulatory state of the thick 
filament, switching motors ON (10). This visit and the two previous ones (LS-2650 and LS-2719) were 
aimed at investigating the integration of thin and thick filament regulation by defining how the regulatory 
state of the thick filament in an electrically paced intact trabecula changes in diastole in relation to inotropic 
interventions able to potentiate the systolic force by a factor of 2. The interventions used were (i) the increase 
in sarcomere length (SL) from 1.95 to 2.22 µm with an extracellular [Ca+2] of 1 mM, (ii) the increase in 
exracellular [Ca+2] at constant SL, (iii) the addition to the perfusion solution of 10-7 M isoproterenol (ISO), a 
β-adrenergic agent which increases the degree of phosphorylation of MyBP-C. With LS-2791 we completed 
the investigation, demonstrating that all these inotropic interventions do not affect any of the myosin-based 
reflections related to the OFF state of the thick filament in diastole. The results clarify contradictory findings 
from previous X-ray diffraction experiments on intact trabeculae (11,12) and demonstrate the limits of using 
demembranated preparations, in which the membrane permeabilisation likely affects the intramolecular 
interactions (head-head and head-tail) and the intermolecular interactions (myosin-MyBP-C-titin) that keep 



the myosin motors in the OFF state. The work, published in J Gen Physiol (13), solidifies the idea that the 
recruitment of myosin motors from their OFF state occurs with an energetically well suited mechanism 
downstream with respect to thin filament activation. In experimental visit LS-2791, in agreement with the 
beamline responsible, we dedicated 6 shifts to collect 2D patterns from single fibres from frog skeletal 
muscle to increase the statistical significance of the effect of the small molecule inhibitor blebbistatin on the 
resting and active X-ray reflections related to the thick filament regulatory state (see report LS-2721).  
Methods. The heart trabecula, dissected from the right ventricle of the rat, is mounted in a thermoregulated 
trough perfused with oxygenated solution (1.2 ml/min, 27°C) and attached, via titanium double hooks, to the 
lever arms of a strain gauge force transducer and a loudspeaker motor carried on the moveable stage of a 
microscope. SL is measured with a 40x dry objective and a 25x eyepiece. The length of the trabecula is 
adjusted to have an initial SL of ~2.1 µm (L0 length). A pair of mylar windows is positioned close to the 
trabecula, about 1 mm apart, to minimize the X-ray path in the solution. The trough is sealed to prevent 
solution leakage and the trabecula is vertically mounted in the beam path. Trabeculae are electrically 
stimulated at 0.5 Hz to produce twitches. 2D X-ray patterns are collected during diastole and at the peak of 
the twitch either in control or following the addition of ISO 10-7 M to the perfusion solution. A FReLoN CCD 
detector is placed at 31 m from the preparation to collect the first orders of the sarcomeric reflections with 1.6 
ms time windows. The detector is then moved to 1.6 m to collect up to the 6th order of the myosin-based 
meridional reflections (5-10 ms time windows) at the same trabecula lengths as those set for the 31 m frames. 
Results. Addition of 10-7 M ISO to the physiological solution ([Ca2+] 1 mM), which almost doubles the peak 
force of the systole at SL ~2.1 µm, does not affect, in diastole, the intensities and spacing of all the 
meridional myosin-based reflections (M3 originating from the axial repeat of the myosin motors, M6 mainly 
originating from an axial backbone periodicity, M2, M4, M5 forbidden reflections due to an axial 
perturbation induced by the MyBP-C) and the intensity of the ML1 layer line, originating from the three 
stranded helical symmetry of myosin motors on the surface of the thick filament. Instead, the intensities of 
both the so-called M1/C1 (contributed by the MyBP-C) and T1 (from the regulatory protein troponin on the 
thin filament) meridional reflections decrease, in diastole in the presence of ISO, by 20%  by ISO, likely as a 
consequence of the different degree of phosphorylation of the two proteins. 
Conclusions: Inotropic protocols that double the twitch peak by modulating the [Ca2+]-dependent thin 
filament activation (the increase in  SL (LS-2650) and the addition of ISO to the solution (LS-2719 and this 
report)), produce a corresponding increase in the fraction of switched ON motors but do not affect the OFF 
state of the thick filament in the diastole. Theresults of this work, published in J Gen Physiol (13), solidify 
the new concept that mechanosensing-dependent thick filament regulation is a energetically well suited 
downstream mechanism that rapidly adapts the fraction of switched ON motors to the loading conditions 
during the contraction. The novelty of this work gained a Commentary in J Gen Physiol: T Irving & R. Craig, 
2019. DOI.org/10.1085/jgp.201812307. 
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