ESRF	Experiment title: Single crystal X-ray diffraction measurements on actinide compounds with synchrotron radiation	Experiment number: 20-01-804
Beamline:	Date of experiment:	Date of report:
	from: 25. 04. 2018 to: 02. 05. 2018	08. 06. 2018
Shifts:	Local contact(s):	Received at ESRF:
21	Christoph Hennig	
Names and affiliations of applicants (* indicates experimentalists):		
Atsushi Ikeda*, Thomas Radoske*, and Christoph Hennig* Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany		

Report:

The Rossendorf beamline (ROBL: BM20) currently undergoes a reconstruction that involves the installation of an additional instrument for single crystal X-ray diffraction (SC-XRD) for radioactive materials, such as actinide compounds. The primary aim of this proposal was to establish the technical setup for SC-XRD at ROBL as well as to confirm its feasibility for actual measurements. The detector used in the actual measurements was a Pilatus X 2M pixel area detector (Dectris) with a 450 μ m thick silicon chip size. The sample was monted on a horizontally aligned uniaxial 410A X3 W1 goniometer from Huber GmbH [1] (ω circle). The installation of a small kappa setup (ω , φ and κ goniometer circles) is foreseen, but was not available for this mesurement campaign. A IB-C22-HV slit from JJ-X-ray [2] was placed in front of the sample, which is further followed by a 50 mm-long ionization chamber MKC12 from ESRF [3]. The ionization chamber with a custom made pinhole with a physically separated 1.5 mm aperture was filled with argon gas. A 4 mm- Φ beam-stop was installed between the sample and the detector to prevent the detector from the irradiation of direct beam. The sample alignement was performed with a K2 DistaMax microscope from Infinity Photo-Optical [4]. A small CCD camera with an active area of 13.91 (h) x 10.8 (v) mm, 1360 x 1040 pixels, from Photonic Science Ltd. [5] was also installed to control the focusing and alignment of X-ray beam. All the measurements were performed at room temperature.

A double confinement for the radioactive actinide samples was designed as follows. The crystal was embedded on a MiTeGen crystal loop [6] with a fast-hardening epoxy glue. The epoxy glue fully coveres the crystal surface and acts as a first confinement. The MiTeGen loop was then placed in a sealed 1 mm- Φ polyimide (Kapton) tube from Cole-Parmer [7], which acts as a second confinement. Fig. 1 shows an

example of a 30 μ m large crystal mounted on the MiTeGen crystal loop with the glue and covered by with the Kapton tubing. The picture was collected with the K2 DistaMax microscope.

Fig. 1. Single crystal mounted on a MiTeGen crystal loop sealed with a Kapton tube. The picture was acquired with the K2 DistaMax microscope. The red crosses indicate the upper and lower positions of the primary X-ray beam. The crystal is placed over the red x-symbol.

Synchronized triggering movement of the goniometer and the data readout from the detector were performed with the program *Pylatus* developed by V. Dyadkin [8]. The program package *SNBL ToolBox* from the same developer [8] was used to extract the data and to convert the raw measurement data into the files appropriate (e.g. *hkl* files) for further structure refinement on the Rigaku diffraction software *CrysAlis* [9].

Based on the data acquired during this measurement campaign, we have succeeded in determining the coordination geometry of the tetravalent uranium (U(IV)) complex with salen (N,N'-ethylenebis(salicylimine)) ligand possessing mixed N,O-donor functionalities. Fig. 2 shows the determined crystal structure. The restricted ω circle geometry resulted in the data acquisition with only an 80% completeness. Nevertheless, a R1-vaule of 2.99 % is already achieved, suggesting potential for further improvement when the measurement set-up and system are eventually optimized.

Fig. 2. Molecular structure of UCl₂Salen(MeOH)₂. Space group: P 4₃2₁2.

References

[1] Huber Diffraktionstechnik GmbH, Rimsting, Germany (http://www.xhuber.de).

- [2] JJ X-Ray, Dansih Science Design. Hoersholm, Denmark (https://www.jjxray.dk).
- [3] European Synchrotron Radiation Facility (ESRF), Grenobe, France (www.esrf.eu).
- [4] Infinity Photo-Optical, Centennial, U.S.A. (http://infinity-usa.com).
- [5] Photonic Science Ltd., Millham, UK (www.photonic-science.co.uk).
- [6] MiTeGen, Ithaca, U.S.A. (https://www.mitegen.com).
- [7] Cole-Parmer, Vernon Hills, U.S.A. (www.coleparmer.com).
- [8] V. Dyadkin, P. Pattison, V. Dmitriev and D.Chernyshov, J. Synchrotron Rad. (2016). 23, 825-829.
- [9] CrysAlisPro Software System, Version 1.171.38.41. Rigaku (http://www.rigaku.com).