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Report: 

 

The main objective of this project was to investigate the underlying mechanism of the martensitic fcc to 

hcp transition and the thermoelastic properties of xenon in a wide pressure and temperature domain (90 

GPa and 1200 °C). Due to their simple electronic configuration, noble gases are excellent model systems with 
important implications in solid state Physics, Materials and Earth sciences [1-3]. We have recently investigated 
the stability fields and equations of state of fcc/hcp argon, krypton and xenon at room temperature and up to 150 
GPa using X-ray absorption and X-ray diffraction techniques [4, 5, 6]. Under high temperature, experimental 
data are presently sparse and have been limited to laser-heating techniques, with unavoidable temperature 
gradient issues [7]. They are however essential to constrain the mechanism of the martensitic transition. In 
addition, the thermoelastic parameters for heavy noble gases are little constrained [8], but are essential to expand 
theoretical models and to refine existing data on noble gas solubilities in the deep Earth’s mantle phases [9].  
 
We have characterized the martensitic transition mechanism and its effect on the thermoelastic properties 

of solid xenon up to 60 GPa and 500 °C using XRD and XAS measurements in a resistively heated 

diamond anvil cell (RH-DAC). The RH-DAC provides a homogenous heating and therefore permits to monitor 
the transition progress and crystallographic properties of the sample in a continuous manner and with high 
precision. 
 
ID15B experiment: 

The diffraction experiments were carried out at the beamline ID15B of the ESRF (Fig. 1, left). The Eiger 9M 
detector was not available at the time of the experiment and the MAR Research 345 mm Image Plate (MAR345) 
was therefore employed. The X-ray beam was tuned to an energy of  30.17 keV (corresponding to a wavelength 
of 0.411 Å) and was focused to a spot size of 10*10 μm2 in the horizontal and vertical directions. The sample 
to detector distance was set to 399 mm and calibrated using an Si standard, similar to detector tilt and rotation 
parameters. 



  
Fig. 1. Experimental setup at the diffraction beamline ID15b and RH-DAC employed in this study. 

 
For high pressure generation three membrane driven diamond anvil cells of the Letoullec design were employed 
provided by the ESRF sample environment. The diamond anvil cells were equipped with single-crystal 
diamonds of the Boehler-Almax design with culet sizes of 250 and 300 μm. Xenon was loaded in the sample 
chamber using high-purity xenon from Messner and the gas loading device at the ESRF. For high temperature 
generation the externally heated diamond anvil cell developed at the ESRF sample environment was employed 
that allows reaching maximal 600 °C. Three isothermal high-pressure runs were performed at 155, 295 and 455 
°C and up to 60 GPa. The pressure was determined from the lattice parameter of a small gold chip (5*5*5 μm3), 
the sample temperature measured on the table of one diamond (Fig 1, right) and the thermal equation of state 
reported by Anderson et al. [10] or a ruby sphere that was loaded with the sample on the side of the sample 
chamber. Sample properties were determined in the centre of the cell to limit peak overlaps with those of the 
pressure standards and to facilitate the diffraction pattern analysis using Rietveld methods. In total 650 
diffraction data points were acquired that allowed monitoring the progression of the fcc-hcp transition in xenon 
and the effect of temperature on the later. The diffraction images were analysed using Rietveld refinement 
methods and the software package MAUD using our previous protocols [4, 5, 6]. 
 

 
 

Fig. 2. Left panel: Raw diffraction data acquired on pure xenon at 450 °C and up to 53(1) GPa. Right panel: integrated 

diffraction images analysed with the software package MAUD. 

 

 
 



Fig. 3. Left panel: Pressure evolution of the reduce crystallographic volume of fcc xenon along the three isotherms and 

fits to the data using a Birch-Murnaghan Mie-Grueneisen EOS formalism. Left panel: Pressure evolution of the reduced 

volumes of hcp xenon along the three isotherms. 
 

At present, the diffraction data have been analysed. The pressure evolution of the hcp xenon volume fraction 
together with the atomic volumes and the crystal domain sizes of the fcc and hcp phases have been extracted. 
The latter have been fitted to thermal equation of state formalisms to extract the thermoelastic data of xenon. 
We notice important anomalies in the compression behaviour that maybe related to the fcc-hcp transition and 
the transformational stresses that emerge in the host and daughter phases because of this transition. The 
anomalies are the lowest for the run conducted at the highest temperature. This suggests that elevated 
temperatures are needed to study the compression behaviour without artefacts due to the transition itself. Due 
to the limited amount of beamtime isothermal runs at higher temperatures and up to 1200 °C (temperature limited 
of the internally heated diamond anvil cell available at the ESRF sample environment) could not be performed.  
To complet this study in future we plan to submit a follow-up proposal.  
 
BM23 experiment:  

Complementary X-ray absorption spectroscopic (XAS) data of liquid and solid xenon were acquired at 
the beamline BM23 of the ESRF through inhouse research to achieve the aim of the proposal. The beamline 
optics comprised two Si(311) monochromator crystals in fixed-exit geometry coupled to two Pt-coated KB-
mirrors employed for beam focusing and harmonic rejection. The X-ray beam was tuned over the xenon K-edge 
(34.6 keV) and was focused to 3*3 μm2. The incident and transmitted beam intensities were measured using 
ionchambers mounted before and after the sample and filled with appropriate gas mixtures. The pressure was 
determined using a crystal of Sm:SrB4O7 loaded together with xenon in the sample chamber. The same RH-
DAC was employed as for the ID15b run, except that only one DAC was employed equipped with nano-
polycrystalline diamonds having a culet diameter of 600 μm were employed which are necessary to acquire 
glitch-free EXAFS data.  

The aim of the XAS run was to study the solidification of xenon and the structural properties of the first-
forming xenon crystal (Fig. 4). The latter was challenging to extract from the X-ray diffraction data due to 
significant peak breading (Fig. 2 left panel) potentially related to extensive thermal vibrations present in 
crystalline xenon at low pressure and high temperature. 

 
Fig. 4. Left panel: View on the xenon sample during melting at 2.4 GPa and 640 K. Right panel: Probed P/T 

space of the XAS run.  

 

XAS data were analysed using the software package Athena and Arthemis. Solid and liquid xenon exhibit clear 
feature differences in the XANES region and could be therefore easily distinguished to establish the phase 
diagram shown in Fig. 4 (right panel). The extracted EXAFS data reveal however a very low amplitude of 
oscillations due to strong contributions of thermal vibrations at these low pressure but high temperature 
conditions. This small signal could only be resolved up to a k equal 5 Å-1 with the photon flux provided at BM23 
(10^9 ph/sec after beam focalisation) despite its improvement by a factor of 3 thanks to the EBS. Such weak 
signals may be resolvable in future at ID24-DCM that provides 4 orders of magnitudes higher flux (10^13 ph/sec) 
or at low temperature but high pressure conditions.  
 



 

 
 
Fig. 5. Extracted XAS data of solid and liquid Xe at high pressure and temperature. Top left panel: XANES 
data. Top right panel: extracted EXAFS oscillations. Bottom panel: Magnitude of the Fourier transform. 
 
 
XAS data analysis is ongoing while XRD data analysis has been finalized. The data and results currently 
prepared for publication. The new data will improve significantly our understanding of the physical properties 
of noble gas solids at non-ambient conditions and the effect of temperature on the progression of the fcc-hcp 
transition. 
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