The Measurement Context
a.k.a The Hybrid Approach

A simple, expressive HDF5 hierarchy and API for
data acquisition and analysis

Darren Dale
Staff Scientist, Cornell High Energy Synchrotron Source (CHESS)

Opening Thought

e The general problem we are considering 1s how to develop
abstractions to describe data in different contexts

We are here to discuss a format to express abstractions that describe
data in context of hyperspectral analyses

NeXus seems to develop abstractions in the context of an instrument
(originally conceived to describe neutron scattering instruments)

Armando and I worked on a “hybrid” approach to help us bridge the
gap between the spec format and NeXus: a measurement context

e Not a full instrument definition, only what is relevant to the current
measurement

Measurement/Instrument and Analyses contexts together should
provide a solution to the general problem

e Let's keep this in the back of our mind as we consider formats for
data exchange and analysis

CHESS

Small facility funded by the National Science Foundation
Located on the Cornell Campus
6 beamlines
— 2 wiggler IDs feeding 3 beamlines, 7 endstations
— 4 bending magnets feed 4 endstations
16 research associates (11 beamline scientists)
~23 support staff (1 dedicated software engineer)

Technique development

- Frequently assemble experiments in an “empty hutch™ at four
endstations

— Require flexible solutions for data acquisition and data storage

Data Acquisition: Spec and EPICS

e Heavily reliant on the Spec data acquisition program
— Sequencer with command line interface
— Extensible via C-like macros
— Primary interface to hardware
e Spec produces data in ASCII files
— Multiple scans 1n a single file

— File and scan headers contain motor names and positions, additional
(arbitrary) metadata

- “Table” containing scalar data (independent and dependent)
— Vector data (e.g. MCA) interleaved with scalar data

e Use Spec to interface with EPICS-controlled devices (new to
CHESS)

— One “spec file” per device, per scan, formatted as above

Consider: Scanning X-ray Fluorescence
Microscopy

e Users need real-time analysis and feedback

— Fit fluorescence spectrum for each pixel during a scan, update a
false-color element map during acquisition

— Select one or more pixels from the map to see the spectrum and fit
— Identify detector problems or artifacts early
— Users leave CHESS with processed data
e Desire a more capable file format
— Binary (Spec ASCII format is inefficient)
— Hierarchical (convey context)
— Accessible/cross-platform/open-source
— Pervasive/authoritative
— Began using HDF5 3 years ago

Thoughts on NeXus Format

Mertits:

— Developing standard abstractions

— Use hierarchy to organize abstractions and relationships (context)
Inherent frustration between objectives: flexibility, standardization

— Not specific to NeXus, but a problem we need to address
Concerns:

— Ambitious / not enough resources

— Direction: disappointed with recent focus on XML

— Difficulty finding example data files that pass NeXus validation tests

CHESS 1s considering NeXus, but for now we need something a
little closer to our existing approach

The Hybrid Approach
(or Measurement Context)

Take the Spec data file(s) organization and cast 1t into a
“measurement” group located in an NXentry

— Allows easy conversion of existing spec data to hdf5

— Flexible to support rapidly changing instruments and data
acquisition environments

— Ability to build a standard nexus hierarchy alongside the
measurement group — provides an upgrade path

Provide metadata so user/analysis program can work with data in
the context of the measurement (not the entire instrument):

— Primary signals, monitor
— Principle scan axes, ranges
— Skipped scan points

Subgroups of Measurement Group

e ScalarData
— 1-dimensional arrays (even for higher dimensional scans)
— Axes (configurables)
— Signals (responses)
e Positioners (probably should be called configuration)
— Starting positions and configurations stored in spec scan header
e Devices (zero or more groups representing MCAs, CCDs, etc.)
— Properties (channels)
— Scalar data (dead time)
— Vector (spectrum), array (1image), or higher-dimensionality data
— Calibration information and other metadata

Example data

X () Xpaxs ® @ ®)
Fle Acquisition Tools View Settings Help
Fle/Group/Dataset Description Shape Data Type
- fhome/darren/norcod-1.dat. hs File
+-1 Entry
+- 2 Entry
-3 Entry
- measurement Measurement
+- element_maps ElementMaps
+- positioners Pasitioners
--gcalar_data ScalarData
Ca Signal (26781,) float3z
10 Signal (26781,) float3z
11 Signal (26781,) float32
] Signal (26781,) float32
Ical Signal (26781,) float32
cesr Signal (26781.) float3z
epoch Dataset (26781.) floated
i Dataset (26781,) uint3z2
masked Signal (26781.) uints
samx Axis (26781,) float32
samz Axis (26781,) float32
seconds Signal (26781,) float32
- wortexl MultiChannelA. ..
lcal Signal (26781.) float3z
channels Dataset (2048,) int32
counts Spectrum (26781, 2048) float3z
dead_time DeadTime (26781,) float32
icr Dataset (26781,) float32
live Dataset (26781,) float32
masked Signal (26781,) uints
acr Dataset (26781.) float32
real Dataset (26781,) float32
b

Data acquisition

e Spec Client/Server mode
— Spec still produces (large) ASCII files
— Register variables to be broadcast to client programs

e SpecClient (Python Library and spec macros written by Mattias
Guijarro at ESRF)

— Contributed spec macros to broadcast arbitrarily structured data
hierarchies to clients

— Contributed patch for python clients to receive and assemble the data
into standard python data structures

— Clients receive data after each point in a scan, can analyze and
display processed data

* needs to be improved by developing analysis contexts

Example of Spec Macros for
Broadcasting

at scan start, specify hierarchy:
python_repr produces a python string representation of spec data

define the MCA group:

local 1 kwargs|[]

kwargs["calibration"] = python_repr(python_repr(CAL))
kwargs["monitor"] = python_repr(cnt_name(MON))

client_set scan_env(‘“vortex1”, "MultiChannelAnalyzer", kwargs)

define the McaSpectrum dataset:

for (i in kwargs) delete kwargs|[i]

local array shape[2]

shape[0] = SC_NPOINTS; shape[1] = uch

kwargs["shape"] = python_repr(shape)

kwargs["dtype"] = python_repr("f")
client_set scan env(“vortexl/counts”, "Spectrum", kwargs)

define deadtime dataset:

for (i in kwargs) delete kwargs|[i]

local array shape[1]

shape[0] = SC_NPOINTS

kwargs["shape"] = python_repr(shape)

kwargs["dtype"] = python_repr("f")

kwargs["units"] = python_repr(“percent”)
kwargs["dead time format"] = python_ repr(‘“percent”)

client set scan env(‘“vortex1/deadtime”, “DeadTime”, kwargs)

at each scan point, broadcast new data:
client_set data("vortex1/dead time", dead)
client set data("vortex1/counts", MCA DATA[1])

e SpecClient automatically sets up
the entry and the measurement
context (including scalar data and
positioners)

e SpecClient automatically
broadcasts scalar data specified in
spec config file

 Configurable for any additional
information that needs to be
broadcast

Example Python Code for Receiving and
processing data

class QtSpecScanA(SpecScan.SpecScanA, QtCore.QObject):

def newScan(self, scanParameters):
tree = scanParameters|['phynx']
info = tree.pop('info’)
h5File = self.getFile(info)
create the entry
entry = hSFile.create_entry(name, **info) # info contains metadata
measurement = entry.measurement
create all the groups under measurement, defined by clientutils:
for key in sorted(tree.keys()):
type, info = tree.pop(key)
phynx.registry[type](measurement, key, create=True, **info)

def newScanData(self, scanData):
1= scanData['scalar data/i']
m = self. scanData.measurement
for k, val in scanData.iteritems():
m[k][1] = val
m[k].acquired =1+ 1

The Importance of the Interface

e The interface to data abstractions/context is critically important
— Interface can help encourage conformance to a standard
— Abstract base classes can define intended behavior of interface

* Required an intuitive, but flexible and powerful interface
— Easily used by experimenters, interactively or in scripts

- Powerful enough to meet the needs of application developers

e (Considered:

- Pytables: Used for a year, intuitive interface, not thread safe, no
support (at the time) for hdf5 links, stores python-specific data

— NeXus: some good 1deas (establish standard hierarchy, metadata),
but required a more intuitive interface than what 1s provided by API

— Decided to build upon h5py: really elegant interface and
implementation, threadsafe, support for hdf5 links

Phynx: An intuitive high-level interface

e Originally intended to be a higher-level, more accessible interface to
hdf5 files containing a NeXus hierarchy

— Intentions discussed on the NeXus mailing list. NeXus requests:
* Do not advertise as official python bindings to NeXus
* Do not introduce new NX classes

e Determine high-level abstractions (implementations) from context
and metadata

* Provide a high-level interface via subclasses and data proxies

— May need more specificity than NX class can provide (new
NX class definitions require approval from the NeXus committee)

— Pipe dream: Would be nice if we all used the same mnterpreted
language (Python), then the high-level implementation for particular
data abstractions could be provided along with the data

Phynx: Implementation

 Wrap hSpy File, Group and Dataset classes

— Take these containers and build abstractions to give them some
personality, functionality, based on context
« ED-MCA: could be subclass of Detector

 MCA counts: subclass of Dataset, with data proxy that corrects for
monitor counts and deadtime

e Deadtime: contains data proxies so deadtime can be expressed in
numerous ways (percent, correction, normalization, etc.)

e Users interact with instances of Phynx classes, using associated GUI
views or interactive interpreter

— Started with Qt4 GUI tree widget to navigate HDF5 file, extended in
PyMca

Phynx: Examples of high-level
capabilities 1n the measurement context

e Automatically identify scan type and default plot
— Sorted axes (fast, slow axes)
— Axes ranges (establish 1image bounds)

— Signals and priority (monitor, skipped points, primary detector)

Automatically identify MCAs or other devices

Iterate over (non-skipped) data points
- Know when to pause iteration (during acquisition, awaiting data)
e Compare raw and corrected data

— Alternative views of the same data, using proxies

e Reshape arrays to the dimensions of the scan (e.g. false color maps)

Extending Phynx: defining new classes

e “NX class™ attribute 1s reserved for NeXus-approved abstractions
(data containers)

e Phynx uses “class” to specify an implementation class

— provides a way to 1dentify more specialized interfaces to data
abstractions without abusing “NX class”

— When opening a group or dataset, the “class” attribute 1s checked to
identify what constructor to use, defaults to Group or Dataset

e The “class” attribute contains a string, like “MultiChannel Analyzer”
» String 1s a key associated with the appropriate class in a registry

* Subclassing phynx.Group or phynx.Dataset automatically registers
the key (the class name) and the class itself in the registry

* Phynx can be extended by third parties (contributions also welcome)

Putting 1t all together:
Extensible Packages for X-ray Science

GUI based on Qt4

Phynx interface to hdf5, including HDFS file navigation

Use SpecClient to interact with equipment, run scans

Interact with data while acquisition and/or analysis 1s 1n progress

— Real-time or offline fluorescence analysis using PyMca

— Threaded task manager spawns additional processes (using SMP or
computer clusters) to process data in parallel

— hSpy/phynx are threadsafe, but...

- Cpython's multithreading capabilities are limited by the existence
of the Global Interpreter Lock

In use at CHESS/F3 for 2 years
Considering significant refactor using Enthought Tool Suite

K - SXFM v A
Fle Acquisition Tools WView Settings Help

File/Group/Dataset Description ~ | spec Interface G
I = 7 F = - + 42 Entry Gamepad | Scan Controls
mmand Tile LB e
+ 85 Entry
- Entry N/S Motor phz v
i by @ @ @ Current Position: 59.00000
+ B8 Entry
+ 89 Entry Step Size: 1.00000 i
+.91 Entry
+ 92 Entry Next Position: 59.00000 &
--93 Entry
- measurement Measurement -74.3666 219.633
+ element_maps ElementMaps @ @
+- positioners Positioners T
+ scalar_data ScalarData EQWHotor phy
- vortexl MultiChannelAnalyzer Current Position: 130.000000
channels Dataset
counts McaSpectrum Step Size: 1.000000 i
dead_time DeadTime
icr Signal Next Position: 130.000000 o]
live Signal
ocr Signal GCC 2663
real Signal :
A
Tools View Help
Spectrum Analysis ¢ ¥ XRF Options Elements Wiew
+| Log scale C - - ;
9 00 + B a Data Mass Fraction D00+ 4 B a pixel select mode
3 VK
10 = ek XRF band Ca K v
Mn K -213.0
o] — Fek Dead time 0.072
— NiKk
— Cuk =Z13:5 0.064
n
+ — ZnkK -
& 1 i Plot Options 0.056
g Gak ; —214.0
— AsK =
o sek Max).074806 o~ N 0.048
10 {1 — BrKk —214.5 9 0.040
— FRbK Min J.008312 4 F
o = -215.0 EPN s
i e | Auto scale 0.024
0.2 1 — paL —215.5 |
. 01] lati - % 4 0.016
i 00] LaL Interpo ation gaussian w g T
& 93 1] = ceL _516. . e]
5t 1 — car e lGiiGE G -06 6-35.5-35.0-34.5-34.0-33.5-33.0
—0.3 \ A , . , , , — Aul camy
2 4 6 8 10 12 14 16 18 __ HgL

Energy (KeV) Pb L

Where to go from here?

Possibility of supporting measurement context in NeXus?

Possibility of specifying metadata in NeXus so the high-level
interfaces can identify appropriate subclass implementations?

Analysis contexts in NeXus?
Phynx: Return unit-aware Quantity values (see quantities at PyPI)

Y our 1nput 1s crucial

— Phynx 1s hosted in a DVCS at launchpad (will probably move to
git/github in the near future)

— What are your concerns?

— What do you consider the strengths and weaknesses of this
approach?

— What would be required to suit your needs?

Summary

* The measurement context fits with existing data acquisition schemes
— Easily convert spec data files

— Contains sufficient metadata for applications to determine data
abstractions and relationships in the context of the measurement

e Compatible with simple real-time and offline analysis
e Provides an upgrade path from spec to NeXus hierarchy
* Couple with instrument/analysis contexts for more general solution
e Can help bridge the acquisition format/exchange format divide
e The interface 1s crucial to the success of any format
— Abstract base classes can specify intended behavior of an interface
— Help encourage conformance to some format standard

e Phynx provides an intuitive interface to HDF5 (NeXus) data

— Simple implementation, should be portable to other languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

