

The Measurement Context
a.k.a The Hybrid Approach

A simple, expressive HDF5 hierarchy and API for
data acquisition and analysis

Darren Dale
Staff Scientist, Cornell High Energy Synchrotron Source (CHESS)

Opening Thought
● The general problem we are considering is how to develop
abstractions to describe data in different contexts

– We are here to discuss a format to express abstractions that describe
data in context of hyperspectral analyses

– NeXus seems to develop abstractions in the context of an instrument
(originally conceived to describe neutron scattering instruments)

– Armando and I worked on a “hybrid” approach to help us bridge the
gap between the spec format and NeXus: a measurement context

● Not a full instrument definition, only what is relevant to the current
measurement

– Measurement/Instrument and Analyses contexts together should
provide a solution to the general problem

● Let's keep this in the back of our mind as we consider formats for
data exchange and analysis

CHESS
● Small facility funded by the National Science Foundation
● Located on the Cornell Campus
● 6 beamlines

– 2 wiggler IDs feeding 3 beamlines, 7 endstations
– 4 bending magnets feed 4 endstations

● 16 research associates (11 beamline scientists)
● ~23 support staff (1 dedicated software engineer)
● Technique development

– Frequently assemble experiments in an “empty hutch” at four
endstations

– Require flexible solutions for data acquisition and data storage

Data Acquisition: Spec and EPICS
● Heavily reliant on the Spec data acquisition program

– Sequencer with command line interface
– Extensible via C-like macros
– Primary interface to hardware

● Spec produces data in ASCII files
– Multiple scans in a single file
– File and scan headers contain motor names and positions, additional

(arbitrary) metadata
– “Table” containing scalar data (independent and dependent)
– Vector data (e.g. MCA) interleaved with scalar data

● Use Spec to interface with EPICS-controlled devices (new to
CHESS)

– One “spec file” per device, per scan, formatted as above

Consider: Scanning X-ray Fluorescence
Microscopy

● Users need real-time analysis and feedback
– Fit fluorescence spectrum for each pixel during a scan, update a

false-color element map during acquisition
– Select one or more pixels from the map to see the spectrum and fit
– Identify detector problems or artifacts early
– Users leave CHESS with processed data

● Desire a more capable file format
– Binary (Spec ASCII format is inefficient)
– Hierarchical (convey context)
– Accessible/cross-platform/open-source
– Pervasive/authoritative
– Began using HDF5 3 years ago

Thoughts on NeXus Format
● Merits:

– Developing standard abstractions
– Use hierarchy to organize abstractions and relationships (context)

● Inherent frustration between objectives: flexibility, standardization
– Not specific to NeXus, but a problem we need to address

● Concerns:
– Ambitious / not enough resources
– Direction: disappointed with recent focus on XML
– Difficulty finding example data files that pass NeXus validation tests

● CHESS is considering NeXus, but for now we need something a
little closer to our existing approach

The Hybrid Approach
(or Measurement Context)

● Take the Spec data file(s) organization and cast it into a
“measurement” group located in an NXentry

– Allows easy conversion of existing spec data to hdf5
– Flexible to support rapidly changing instruments and data

acquisition environments
– Ability to build a standard nexus hierarchy alongside the

measurement group – provides an upgrade path
● Provide metadata so user/analysis program can work with data in

the context of the measurement (not the entire instrument):
– Primary signals, monitor
– Principle scan axes, ranges
– Skipped scan points

Subgroups of Measurement Group
● ScalarData

– 1-dimensional arrays (even for higher dimensional scans)
– Axes (configurables)
– Signals (responses)

● Positioners (probably should be called configuration)
– Starting positions and configurations stored in spec scan header

● Devices (zero or more groups representing MCAs, CCDs, etc.)
– Properties (channels)
– Scalar data (dead time)
– Vector (spectrum), array (image), or higher-dimensionality data
– Calibration information and other metadata

Example data

Data acquisition
● Spec Client/Server mode

– Spec still produces (large) ASCII files
– Register variables to be broadcast to client programs

● SpecClient (Python Library and spec macros written by Mattias
Guijarro at ESRF)

– Contributed spec macros to broadcast arbitrarily structured data
hierarchies to clients

– Contributed patch for python clients to receive and assemble the data
into standard python data structures

– Clients receive data after each point in a scan, can analyze and
display processed data

● needs to be improved by developing analysis contexts

Example of Spec Macros for
Broadcasting

at scan start, specify hierarchy:
python_repr produces a python string representation of spec data

define the MCA group:
local i kwargs[]
kwargs["calibration"] = python_repr(python_repr(CAL))
kwargs["monitor"] = python_repr(cnt_name(MON))
client_set_scan_env(“vortex1”, "MultiChannelAnalyzer", kwargs)

define the McaSpectrum dataset:
for (i in kwargs) delete kwargs[i]
local array shape[2]
shape[0] = SC_NPOINTS; shape[1] = uch
kwargs["shape"] = python_repr(shape)
kwargs["dtype"] = python_repr("f")
client_set_scan_env(“vortex1/counts”, "Spectrum", kwargs)

define deadtime dataset:
for (i in kwargs) delete kwargs[i]
local array shape[1]
shape[0] = SC_NPOINTS
kwargs["shape"] = python_repr(shape)
kwargs["dtype"] = python_repr("f")
kwargs["units"] = python_repr(“percent”)
kwargs["dead_time_format"] = python_repr(“percent”)
client_set_scan_env(“vortex1/deadtime”, “DeadTime”, kwargs)

at each scan point, broadcast new data:
client_set_data("vortex1/dead_time", dead)
client_set_data("vortex1/counts", MCA_DATA[1])

● SpecClient automatically sets up
the entry and the measurement
context (including scalar_data and
positioners)
● SpecClient automatically
broadcasts scalar data specified in
spec config file
● Configurable for any additional
information that needs to be
broadcast

Example Python Code for Receiving and
processing data

class QtSpecScanA(SpecScan.SpecScanA, QtCore.QObject):

 def newScan(self, scanParameters):
 tree = scanParameters['phynx']
 info = tree.pop('info')
 h5File = self.getFile(info)
 # create the entry
 entry = h5File.create_entry(name, **info) # info contains metadata
 measurement = entry.measurement
 # create all the groups under measurement, defined by clientutils:
 for key in sorted(tree.keys()):
 type, info = tree.pop(key)
 phynx.registry[type](measurement, key, create=True, **info)

 def newScanData(self, scanData):
 i = scanData['scalar_data/i']
 m = self._scanData.measurement
 for k, val in scanData.iteritems():
 m[k][i] = val
 m[k].acquired = i + 1

The Importance of the Interface
● The interface to data abstractions/context is critically important

– Interface can help encourage conformance to a standard
– Abstract base classes can define intended behavior of interface

● Required an intuitive, but flexible and powerful interface
– Easily used by experimenters, interactively or in scripts
– Powerful enough to meet the needs of application developers

● Considered:
– Pytables: Used for a year, intuitive interface, not thread safe, no

support (at the time) for hdf5 links, stores python-specific data
– NeXus: some good ideas (establish standard hierarchy, metadata),

but required a more intuitive interface than what is provided by API
– Decided to build upon h5py: really elegant interface and

implementation, threadsafe, support for hdf5 links

Phynx: An intuitive high-level interface
● Originally intended to be a higher-level, more accessible interface to

hdf5 files containing a NeXus hierarchy
– Intentions discussed on the NeXus mailing list. NeXus requests:

● Do not advertise as official python bindings to NeXus
● Do not introduce new NX_classes

● Determine high-level abstractions (implementations) from context
and metadata

● Provide a high-level interface via subclasses and data proxies
– May need more specificity than NX_class can provide (new

NX_class definitions require approval from the NeXus committee)
– Pipe dream: Would be nice if we all used the same interpreted

language (Python), then the high-level implementation for particular
data abstractions could be provided along with the data

Phynx: Implementation
● Wrap h5py File, Group and Dataset classes

– Take these containers and build abstractions to give them some
personality, functionality, based on context

● ED-MCA: could be subclass of Detector
● MCA counts: subclass of Dataset, with data proxy that corrects for

monitor counts and deadtime
● Deadtime: contains data proxies so deadtime can be expressed in

numerous ways (percent, correction, normalization, etc.)
● Users interact with instances of Phynx classes, using associated GUI

views or interactive interpreter
– Started with Qt4 GUI tree widget to navigate HDF5 file, extended in

PyMca

Phynx: Examples of high-level
capabilities in the measurement context

● Automatically identify scan type and default plot
– Sorted axes (fast, slow axes)
– Axes ranges (establish image bounds)
– Signals and priority (monitor, skipped points, primary detector)

● Automatically identify MCAs or other devices
● Iterate over (non-skipped) data points

– Know when to pause iteration (during acquisition, awaiting data)
● Compare raw and corrected data

– Alternative views of the same data, using proxies
● Reshape arrays to the dimensions of the scan (e.g. false color maps)

Extending Phynx: defining new classes
● “NX_class” attribute is reserved for NeXus-approved abstractions

(data containers)
● Phynx uses “class” to specify an implementation class

– provides a way to identify more specialized interfaces to data
abstractions without abusing “NX_class”

– When opening a group or dataset, the “class” attribute is checked to
identify what constructor to use, defaults to Group or Dataset

● The “class” attribute contains a string, like “MultiChannelAnalyzer”
● String is a key associated with the appropriate class in a registry
● Subclassing phynx.Group or phynx.Dataset automatically registers

the key (the class name) and the class itself in the registry
● Phynx can be extended by third parties (contributions also welcome)

Putting it all together:
Extensible Packages for X-ray Science

● GUI based on Qt4
● Phynx interface to hdf5, including HDF5 file navigation
● Use SpecClient to interact with equipment, run scans
● Interact with data while acquisition and/or analysis is in progress

– Real-time or offline fluorescence analysis using PyMca
– Threaded task manager spawns additional processes (using SMP or

computer clusters) to process data in parallel
– h5py/phynx are threadsafe, but...
– Cpython's multithreading capabilities are limited by the existence

of the Global Interpreter Lock
● In use at CHESS/F3 for 2 years
● Considering significant refactor using Enthought Tool Suite

XPaXS

Where to go from here?
● Possibility of supporting measurement context in NeXus?
● Possibility of specifying metadata in NeXus so the high-level

interfaces can identify appropriate subclass implementations?
● Analysis contexts in NeXus?
● Phynx: Return unit-aware Quantity values (see quantities at PyPI)
● Your input is crucial

– Phynx is hosted in a DVCS at launchpad (will probably move to
git/github in the near future)

– What are your concerns?
– What do you consider the strengths and weaknesses of this

approach?
– What would be required to suit your needs?

Summary
● The measurement context fits with existing data acquisition schemes

– Easily convert spec data files
– Contains sufficient metadata for applications to determine data

abstractions and relationships in the context of the measurement
● Compatible with simple real-time and offline analysis
● Provides an upgrade path from spec to NeXus hierarchy
● Couple with instrument/analysis contexts for more general solution
● Can help bridge the acquisition format/exchange format divide

● The interface is crucial to the success of any format
– Abstract base classes can specify intended behavior of an interface
– Help encourage conformance to some format standard

● Phynx provides an intuitive interface to HDF5 (NeXus) data
– Simple implementation, should be portable to other languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

