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This workshop

e Thanks to Armando Solé and Andy Gotz for
organizing this workshop!

e Nitty gritty details of data storage are often
swept under the rug at conferences and
workshops, yet play a huge role in practice.

 How does one try other analysis programs?
How does one share data with other
researchers?



X-ray mlcroscopy group at Stony Brook

P e e BRI

Jan Steinbrener,
Lisseth Gavilan,
Xiaojing Huang,
Christian Holzner,
Rachel Mak, Josh
Turner, Johanna
Nelson, Chris
Jacobsen, Robert
Towers. Not
shown: Sue Wirick,
Chris Peltzer.

Phase contrast and _
fluorescence

Spectromicroscopy %
XDM/CXDI

Summer at Stony Brook: groups take turns sponsoring
the 4:30 pm Friday beer keg

Moving to Northwestern University!



This talk

e Soft x-ray spectromicroscopy: what we do
and how we process the data

— Principal components, clusters, and non-negative
matrices

e Connections with problems in other fields
— X rays, electrons, satellites, shopping...

e Some thoughts on data formats



Near-edge absorption fine structure (NEXAFS) or
X-ray absorption near-edge structure (XANES)

e Fine-tuning of the x-ray energy near an atom’s edge gives sensitivity to
the chemical bonding state of atoms of that type

e First exploitation for chemical state transmission imaging: Ade, Zhang

et al., Science 258, 972 (1992) — Stony Brook/X1A
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Mass Absorption Coefficient (10* cm?2/g)

C-XANES of amino acids

e K. Kaznacheyev et al., J. Phys. Chem. A 106, 3153 (2002)

e Experiment: K. Kaznacheyev et al., Stony Brook (now CLS)

e Theory: O. Plashkevych, H. Agren et al., KTH Stockholm; A.
Hitchcock, McMaster
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Spectromicroscopy: nanoscale heterogeneity

Lu in hematite (T. Schafer)

Use of XANES for imaging chemical speciation:
Ade, Zhang et al., Science 258, 972 (1992).

Aligned spectral image sequences: Jacobsen et al.,
J. Microscopy 197, 173 (2000)

Spectrum per pixel: spectromicroscopy, spectrum
imaging, hyperspectral imaging...




Spectromicroscopy data

* Spectrum per pixel: cube in x, y, and E

e But we will treat pixels as independent, without
worrying about spatial correlations: p=i+i, N

* Thus we have data in energies n=1...N and
pixels p=1...P

e \We measure a data matrix Dyxp:

D11 piXClS Dlp ]

Dyxp = spectra .
DNl c o DNP




Spectromicroscopy analysis

We measure the optical density D=yt from I=/,exp[-pt], which gives
us a matrix over n=1..N energies and p=1..P pixels of the data:

D11 piXGlS Dlp ]

Dnxp = | spectra :
I D1 e Dnyp

We wish we could interpret this in terms of a set of s=1..5
components. We would then have a matrix of their spectra

H11 components ;g

HNxs = | spectra
i ILLNl c .. //LNS
We would also have a matrix of their thicknesses

t11 piXGlS tlp
tsxp = | components
I tsy Ce tsp ]

What we have

What we wish we had



Analysis with known spectra

- Again, data are spectra times thicknesses:

I

spectra
D

pixels Dip | | w1 components
: = | spectra
Dyp | | b

or  Dyxp = UNxS - Tsxp

MIS_ i

UNS | |

t11

components
ts1

pixels t1p |

tsp |

- Example: polymer blend. We may know that we have two or three
polymers present, with no reactive phases.

Can measure spectra of all components from hand-selected regions

We therefore know i« g

We can obtain thickness maps (images) by matrix inversion:

—1
thP — Hgx N ° DNxP

Matrix Uy x s of all spectra can be inverted using singular matrix
decomposition (SVD). See e.g., Zhang et al., J. Struct. Biol. 116,
335 (1996); Koprinarov et al., J. Phys. Chem. B 106, 5358 (2002).
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What if we don’t know the components or
their spectra Uy xs ?

- “Natural” specimens, such as in biology or
environmental science

- Reactive phases, rather than simple mixing

- Complexity! 300x300 pixel image contains 10°

spectra!
- Can we find the “organizer” from the data?

11



The “organizer”: components S

* If we know the s=1...§ components (e.g., known

pure compounds) and their spectra, we know pinxs

and thus tgxp = tigen - Dnxp

Dy ... Dip Hi1 ... 1S f11 ... hp

Dy1 ... Dnp UN1 .. NS st ... Isp |

e And if not? Can we uncover an “organizer” for
our data anyway? General problem: find §!




Finding S: eigenvalues through covariance

e We want to find the “hidden” dimension S

e Form covariance matrices:
T T
ZnxN = Dnxp - Dpyy and Zpxp = Dpyn - Dnxp

Symmetric, and from same information. If N = 10% and P = 104,
guess which 1s quicker to compute?

e Using Zyxn, find s = 1 - N eigenvalues A(s):
Zyxn - T($)nx1 = A(s) r(s)nx1

e With eigenvalues A\(s) overs = 1...N, the orthogonal matrix C is
formed from the eigenvectors r(s)y:

I r(1)1 r(S)1

CNxS —

Cr()y ... FS)w

Again, when Cy «s 1s known, one can calculate Rgy p. N



Principal component analysis (PCA)

Find set of

components S that
reflect intrinsic
properties of the
data

Scatterplot: pixels plotted based
on signal at two different photon
energies
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Principal component analysis (PCA)

Find set of

components S that
reflect intrinsic
properties of the
data

1. Find the axis along which there is
the greatest variance

Energy 2

Energy 1
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Principal component analysis (PCA)

Find set of

components S that
reflect intrinsic
properties of the
data

1. Find the axis along which there is
the greatest variance

2. Find an orthogonal axis of next
greatest variance

Energy 2

Energy 1

16



Principal component analysis (PCA)

Find set of

components S that
reflect intrinsic
properties of the
data

1. Find the axis along which there is
the greatest variance

2. Find an orthogonal axis of next
greatest variance

3. Gives a new coordinate system

Energy 2

Energy 1
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Find set of

components S that
reflect intrinsic
properties of the
data

1.

2.

il

Principal component analysis (PCA)
&

2 luauodwon

Find the axis along which theré\
the greatest variance
Find an orthogonal axis of next
greatest variance

Gives a new coordinate system
Rotate onto new, orthogonal
coordinate system

Component 1
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Are eigenvalues S enough? Are we done?

* We can find eigenvalues which give us one
way to find an “organizer” S.

PCA in spectromicroscopy: King et al., J. Vac. Sci. Tech. A 7, 3301 (1989); A.
Osanna & C. Jacobsen, XRM99 proceedings; Bonnet et al., Ultramicroscopy 77,

97 (1999).

* But is it the right “organizer” §?

19




Eigenspectra and eigenimages

Find reduced number of
: . significant components §

abstract

A) Eigenspectra
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Eigenspectra and eigenimages

vvvvvv

Find reduced number of
significant components §

abstract

A) Eigenspectra
.
1 b Ll
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Energy (eV)
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Eigenspectra and eigenimages

Find reduced number of
significant components §

abstract

A) Eigenspectra

505 530 535 540 545 550
Energy (eV)

B) Eigenvalues A(s)

0 10 20 30 40 50
Component s 23



Eigenspectra get us something...

- Principal component analysis lets you reduce and
orthogonalize the data set!

- Reduction: filter out spectral variations that are poorly
correlated throughout the dataset (smells like photon
noise!). We went from N=140 energies to Sabstract =4
components.

- Orthogonality might have nice consequences.

But we have a problem...
- Eigenspectra > 1 are abstract. They have negative
optical densities, so they are not readily interpretable.

24



A well-known problem

We chose to follow an approach which is well
known in the literature:

“You can’t always get what you want; but if you
try sometimes, well you just might find you get
what you need”

M. Jagger, K. Richards et al., Let it Bleed 1, 1 (1969)

25



Finding useful organizers S

o Cluster analysis: pixels with common
spectroscopic signatures yield Cyxs

* Varimax: “rotate” Cnxs to make all spectra
positive. Works well with discrete elemental
signals in fluorescence, TOF-SIMS (P. Kotula,
Sandia Labs).

* Non-negative matrix factorization: build Cwxs
from noise, constraining for positivity and a
minimum set of S

26



Cluster analysis:
Euclidian distance learning algorithm

YV / Vi T~
. ‘ =

[Q\|
-  Kohonen, Proc. IEEE 78, e
1464 (1990) =
. o
e Pixels are scattered £
according to weighting of O
each component 0
@)
o %o
o O
o Component 1
O
% _ @
5y : Co’mponenﬂ O © OOO o
O
@) @)
Start from PCA
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Kohonen, Proc. [EEE 78,

1464 (1990)
Pixels are scattered

Cluster analysis:
Euclidian distance learning algorithm

=k

according to weighting of

each component

Put down cluster centers at

random positions.

Component 2
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Euclidian distance learning algorithm

Kohonen, Proc. [EEE 78,

1464 (1990)
Pixels are scattered

according to weighting of ~ <

each component

Cluster analysis:

]
Y 4
/
, Component 2

Put down cluster centers at

random positions.

Iterate through all pixels,

several times:

— Calculate distances from

one pixel to all cluster
centers.
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Cluster analysis:

Euclidian distance learning algorithm

Kohonen, Proc. [EEE 78,

1464 (1990)
Pixels are scattered

according to weighting of

each component

Component 2

Put down cluster centers at o %o

random positions.

Iterate through all pixels,

several times:

- Calculate distances from

one pixel to all cluster
centers.

— Pick shortest distance.

— Move cluster center partway

to pixel.
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Cluster analysis:

Euclidian distance learning algorithm

Kohonen, Proc. [EEE 78,
1464 (1990)

Pixels are scattered
according to weighting of
each component

Put down cluster centers at
random positions.

Iterate through all pixels,
several times:

- Calculate distances from
one pixel to all cluster
centers.

- Pick shortest distance.

- Move cluster center partway
to pixel.

Cluster pixels with their
nearest cluster center

Component 2
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Cluster analysis: human sperm

Biochemical organization of sperm revealed directly from data: enzyme-
rich region, DNA+histones, mitochondria and flagellar motor, lipid

Carbon mass Q DNA+histones Enzymes H. Fleckenstein. M. Lerotic. Y.
. / . / *

Sheynkin et al., Stony Brook.
Human sperm, air-dried.
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Bacterial Sub-Cellular Features

Studies of uranium reduction by Clostridium sp. (B. Larson, Stony Brook;
J.B. Gillow, A.J. Francis, BNL Applied Science)
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Great! But thickness versus chemistry?

- Scatterplots: each dot is a pixel. Can only show weighting in

two components at a time in a 2D plot.

- Bacterium Clostridium sp. (J.B. Gillow, A.J. Francis)
For some samples, clustering is dominated by thickness

variations rather than spectral differences!
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Different distance measure

- One compositional type should
involve a constant ratio of
components; radius from center is
thickness

COMPONENT j

COMPONENT 1
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Different distance measure

- One compositional type should
involve a constant ratio of
components; radius from center is
thickness

- When Euclidean distance is used,
clustering algorithm finds spherical
clusters

COMPONENT j

COMPONENT 1
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Different distance measure

- One compositional type should
involve a constant ratio of
components; radius from center is
thickness

- When Euclidean distance is used,
clustering algorithm finds spherical
clusters

- To compensate for thickness, use
cosine angle distance (0) instead of
Euclidean distance (d)

COMPONENT j

COMPONENT 1
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Different distance measure

- One compositional type should
involve a constant ratio of
components; radius from center is
thickness

- When Euclidean distance is used,
clustering algorithm finds spherical
clusters

- To compensate for thickness, use
cosine angle distance (0) instead of
Euclidean distance (d)

0 = arccos()_(;,f)

/ \
X. V. 1
O = arccos 2 ok '

\\/Eixiz X iyi }:

COMPONENT j

COMPONENT 1
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Clostridium sp. - reexamined
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Finding useful organizers S

e Cluster analysis: pixels with common
spectroscopic signatures yield Cyxs

* Varimax: “rotate” Cnxs to make all spectra
positive. Works well with discrete elemental
signals in fluorescence, TOF-SIMS (P. Kotula,
Sandia Labs).

* Non-negative matrix analysis: build Cyxsfrom
noise, constraining for positivity and a
minimum set of S
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e Again we wish to find the organizer S:

D1,
spectra
- D

l)le_D
pixels Dip

Dyp |

NNMA: the goal

Cnxs - Rsxp
011 piXClS ClS
spectra :

_ CNI CNS_

R
spectra

Rs1

pixels Rip |

Rgp |

e Our constraint: minimize |D — C - R|rp with
C,R,D >0
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Algorithms for NNMA

Fall into 3 main categories:

* multiplicative update
- prototype: Lee & Seung
- requires more iterations to converge
- not flexible -- once value hits zero, it stays zero for all subsequent
iterations, even if result is not optimal
* gradient descent
- take steps € in direction of negative gradient
- convergence depends on €
» alternating least squares
- can be very fast for unconstrained problems
- non-negatively constrained least squares (NNLS) guaranteed
to converge to local minimum
- but NNLS more costly
— Fast-combinatorial NNLS (FC-NNLS)?



* |terative procedure:

Dynw«p

INxS = UNxS °
INxs X tsxp

For those pixels where iy« s X tsy p gives larger values than those present in
the data Dy p, this estimate update will drive py g towards smaller values
and vice versa.

DNXP )

L T
thP S thP | Hsx N X
UNxS X Tsxp

e Fleckenstein and Jacobsen (unpublished),
after Lee and Seung (1999)
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NNMA: many, many iterations

e On asingle processor, Lee and Seung NMF algorithm can be

slow!
150 —rm——"7r———T——T—T—"7—T—T—T—TT7 T TTT : 8
' | Residual error per pixel (103) | |
| I~ 16
100 | |
: Divergence per pixel (-4x107) | .
_ 14
50 B
| P
_ Number of components :
O L 2 s o 1 . 4 1 ., , , L T—————1 0
0 5 10 15 20

Number of iterations (10%)
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Fast-Combinatorial NNLS

(Benthem & Keenan, 2005)

Problem: find R in
CR=D
for which ||CR - D||¢? is minimized and subject to constraint
R>0

For unconstrained problems, the “pseudoinverse” Ct is the same
for all columns of R:

R=C'D
so we only need to calculate C7 once.

For constrained problems, this is not the case. Do we need to
calculate n inverses for D with n columns?

No...



Fast-Combinatorial NNLS (cont’d)

(Benthem & Keenan, 2005)

* At each iteration, first find columns of R sharing same zero

Z:itions: (O 5 O\
R=|3 0 8
7 4 1

Columns 1 and 3 both have their first elements equal zero.

e Pseudoinverse CT is the same for these columns, thus we can
compute C' in a “column-parallel” way -- this is the “fast” part.

e Benthem also provides a method for identifying and grouping
similar columns -- the “combinatorial” part.

e FC-NNLS looks like a promising algorithm for solving the NNMA
problem -- but still work in progress!



Parallel computing

e Parallel nature of FC-NNLS
algorithm may be well-suited to

parallel computing architecture:
NVidia CUDA, or OpenCL —

e Each inverse calculation for each
“group” of columns is independent.

e Fach inverse calculation can be
computed by a “block” of “threads”.

* Many blocks can execute in parallel,
thus potentially speeding up the
parallel algorithm even more...




This talk

e Soft x-ray spectromicroscopy: what we do
and how we process the data

— Principal components, clusters, and non-negative
matrices

e Connections with problems in other fields

— X rays, electrons, satellites, shopping...

e Some thoughts on data formats
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Hyperspectral data in satellite imaging

* Image with multiple color filters; sort out
vegetation types, or look for armored tanks in
the desert

e Often time a small number of wavelengths:
like ~5 to 128

e Large body of work, but not all of it is
published!

51



Near-edge spectroscopy: ELNES and XANES

ELNES (electron Energy Loss) XANES (X-ray Absorption)
e Plural inelastic scattering e No plural scattering
* Many elements at once - but plasmon * One element at a time -
modes are always excited (damage) slow but less damage
e AF was ~0.6 eV, but now 0.1 eV in e AF of 0.05-0.1 eV is
some Cases common
o] e
5 Peak
107 | AE=24.3 eV }
EIeCtr(()jnS ~1000x 3 Vitreous ice at 100 keV
more damaging: 2 107 Data from Richard Leapman, NIH
® |saacson and - 4
- S 1074+ -
Utlaut, Optik 50, I= lu \\ EELS spectrum
213 (1978) S 1o5L 1 . .
e Rightor et al., /. S X ~e
Phys. Chem. B “ 106k ""'-\...,,\”“ ~~~~~~~~~ -
101, 1950 (1997). 2| Deconvolved B
107" - single-scatter spectrum —
i
l

0 200 400 600 800
Energy loss (eV)
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Spectrum imaging in EELS

e EELS: electron energy-loss spectroscopy

e “Spectrum-image: the next step in EELS
digital acquisition and processing,”
Jeanguillaume and Colliex, Ultramicroscopy
28, 252 (1989)

e “Electron energy-loss spectrum-imaging,”

Hunt and Williams, Ultramicroscopy 38, 47
(1991)
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4908 Biophysical Journal Volume 95 November 2008 4908—-4914

Quantitative Label-Free Imaging of Lipid Composition and
Packing of Individual Cellular Lipid Droplets Using Multiplex
CARS Microscopy

Hilde A. Rinia,* Koert N. J. Burger,’ Mischa Bonn,* and Michiel Miller*

*Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands; T Division of Endocrinology
and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands;
and ¥*FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
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CARS: coherent anti-
Stokes Raman (visible
light probe of what are
normally infrared signals)
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Untangling complexity: single particle
electron microscopy

Goal: atomic-resolution EM. Pioneers: Franck (Albany) and others.

Brink et al., PNAS 99, 138 (2002): many molecules of fatty acid

synthase, in thin ice, at random orientations.
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Labor of love...

e Shown here: film plates of
acetylcholine receptor.
Miyazawa, Fujiyoshi, and
Unwin, Nature 423, 949
(2003).

AQP1: aquaporin-1, Murata,
Mitsuoka, Hirai, Walz, Agre,
Heymann, Engel, and
Fujiyoshi, Nature 407, 599
(2000). (Agre: 2003 Nobel
Prize in Chemistry)
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Multivariable statistical analysis

We’ve seen that there are solutions for Dyxp = Cyxs - Ry« p

Single particle imaging: we have N separate images of our sample,
with P pixels per image, or Dy« p

We want to characterize the data in terms of 6 distinct viewing
directions (rather than § distinct chemical components)

Which of N images map into which of 6 viewing angles? Cy g

What do representative images with pixels P look like from
representative viewing angles 0?7 Ry p

Single particle imaging: find Dyxp = Cyxo - Roxp
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Forming a tomographic dataset

Group similar projections, then iterate:
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Images grouped by 6

* Once images have

been grouped by 6, we

guess their viewing angle by comparing with

projections from a

first-guess model.

e Now do a tomographic reconstruction!

e With a better model, refine:

— Re-do classification of images to O

— Guess again at proj

ection angle

ohic reconstruction

— Do a new tomogra
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Single particle tomography example

e (GroEL: a molecular chaperone to
promote protein folding (essentially
an inner sanctuary, hidden from
chemical environment of a cell)

e |s there molecular-level variability in
GroEL?

e Ludtkeetal., J]. Mol. Bio. 314, 253
(2001)

X-ray crystallography
blurred to 1.2 nm

Of special note: Miyazawa, Fujiyoshi,
Stowell, and Unwin, “Nicotinic

lter 1 lter 2 lter 3 lter 4  lter 5 acetylcholine recepter at 4.6 A resolution:
transverse tunnels in the channel wall,” J.

Mol. Biol. 288, 765 (1999)
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Challenges in electron microscopy

e Radiation damage limits information (and thus alignment) in any single
Image

e Contrast transfer function: what you see depends strongly on the focus!
Must measure and correct for (except for zeroes)

For 100 keV, Cg=2.0 mm

= Scherzer Az=64 nm
=
£
[ 1 I
0.01 0.10 1.00 10.00

Spatial frequency (nm-1)

-1, 3, and 6 um defocus images
Bowen et al., Tomato bushy stunt virus
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amazon.com

e We have N shoppers, and P items for purchase

e We want to find § customer types: Dyxp = Cyxs - Rsxp

e You, as customer n, match customer types given in Cy

e Customer types S like to purchase items P as given by Rgx p

Customers Who Bought This Item Also Bought

"GO HANG A SALAMI! ELVES

I'M A LASAGNA HOG ! LEVES!

l.‘:,- £ “ EE—
Go Hang a Salami! I'm a Sit on a Potato Pan, Otis!: Elvis Lives!: and Other
Lasagna Hoq!: and Other P... More Palindromes by Jon Anagrams (Sunburst Book)
by Jon Agee Agee by Jon Agee
Yolododode (7) $6.96 YRR (2) YRy (1) $8.95
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Netflix Awards $1 Million Prize and Starts a New Contest
£, S '

.

\

[T, o

Jason Kempin/Getty Images

E‘C‘.‘;‘f(kr’f'ii F"’rjlm‘nc O\"j')ﬁ S 1.000,000 =
(
ONE MILLION w/ ()

con The Nf.-Tﬁux Frize

A
“Netflix, the movie rental company, has decided its million-dollar-prize
competition was such a good investment that it is planning another one. The
company’s challenge, begun in October 2006, was both geeky and formidable:
come up with a recommendation software that could do a better job accurately
predicting the movies customers would like than Netflix’s in-house software,
Cinematch. To qualify for the prize, entries had to be at least 10 percent better

than Cinematch.”
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Making the future

more simple

e With better synchrotron radiation instrumentation,
we get richer data of more complex specimens!

e We can learn from other fields how to find the
patterns in rich, complex data.

e \We can learn from each othe

— CCP4 in crystallography: s

r!

nared data formats and

data I/O routines, leading -
analysis programs.

‘0 mix-and-match
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This talk

e Soft x-ray spectromicroscopy: what we do
and how we process the data

— Principal components, clusters, and non-negative
matrices

e Connections with problems in other fields

— X rays, electrons, satellites, shopping...

e Some thoughts on data sharing
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Data storage

e First priority: data exchange, rather than
original data storage

e Agreeing on HDF5 (or NeXus) is a great first
step!
— In our lab: spectromicroscopy

— In our lab: coherent x-ray diffraction imaging/
diffraction microscopy

* But how is the HDF5 file organized?

— ldeally we don’t have to write a separate HDF5
file read/write routine for each dataset!
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The tests were done on an array of 512 x 512 x 128 = 33 554 432 floating point random numbers,
either arranged as a single 1D array, or arranged as a 3D array of dimension [512, 512, 128] to see
if there are extra overhead costs associated with multidimensional data. Each test was repeated 10
times, leading to the averages shown below:

Time (seconds) | Binary | XDR, 1D | XDR, 3D | HDFS5, 1D | HDFS, 3D
Read 2.72 2.75 2.81 4.12 5.07
Write 2.66 3.77 3.23 2.65 2.76

Here are some comments on the test results:

1.

(9

oy

It’s not shown 1n the above table, but using HDFS5 added only 2080 bytes to the size of the
file.

. To do these tests properly, it is important to write a series of files before going back to read

from the first file. Otherwise one can be fooled into thinking that the readback of the data
happened very quickly due to buffering of the data in memory by either the operating system
or the hard disk drive’s firmware.

. It might be that HDFS5 writes the data in machine-native format and does byte-swappingg

upon readback; this would explain why it writes data as quickly as binary streaming while
imposing a 50-90% performance penalty on readback. With the XDR format, byte-swapping
1s presumably happening when the file 1s written, as there is a 20—40% performance penalty
relative to a binary write, but little penalty on file readback.
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Commonality versus local details

* For portability, we want a mir

Imum set of

agreed-upon names and attrib

e For completeness, we want all
the experiment

* For history, we want to record
processing steps that have bee
the data

utes
the details of

all the
n applied to
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Portability

e Agree upon a generic group name for multi-
image data, such as /images Or /main_array

e Assign an attribute to explain the type of data,
such as /images/type=transmission OFr
type=fluorescence Ofr...

e Agree on simple minimal attribute names, such
as energies= with attribute of “ev”

e Programs should skip fields they don’t
understand, instead of crash
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Simplicity=portability

* The less we are required to specify in the file,

the better.

e The more generic we can make the
definitions, the better.

e Any program could look for /images and read

them in with

measuremer

out knowing the “physics” of the
L.

e One can still store all the detailed, non-
generic information you want - just use
additional non-generic HDF5 groups!
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Non-portability

e If you call the primary data group /maps
or  /hyperspectra or... then one has to
decide...

e |f you use “wavelengths” or “keV” versus
“energies” then one has to decide...

e If you use NeXuS conventions then you have
problems sharing programs and data with
electron microscopists, CARS microscopists,
satellite imagers...

e Use HDF5 links to standardized names?
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Completeness

e Create a local group like /ns1s_x1a to store all
local beamline parameters, like what
detector was used and its settings, motor
positions, and so on.

e Include a version number, so that as a
beamline evolves you can select what
parameters are to be read based on the
version number.
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History

e Create a group /history:

— Name and date of originally recorded raw data
file

— Text lines that record processing steps carried out
on the data

e This could be automatically added to by all
analysis programs.

e Can one go to a graphical flow-chart
representation of processing steps, such as is
done in Amira for tomography data
visualization?
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Conclusions

e Multidimensional data are all over the place!

e Lots of people have developed algorithms for
simplification, classification, and analysis

e There could be more cross-fertilization of

meth

scler

ods and software between different
tific communities - even beyond

synchrotrons and neutron facilities!

e To communicate, we need a common
language: HDF5 with agreed-upon naming
conventions.
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