

SAXS at APS

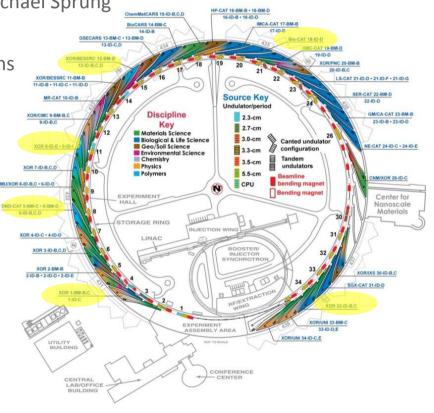
Presented by
Pete R. Jemian
group leader, APS beam line controls and data acquisition

2010-01-12

HDF5 as hyperspectral data analysis format

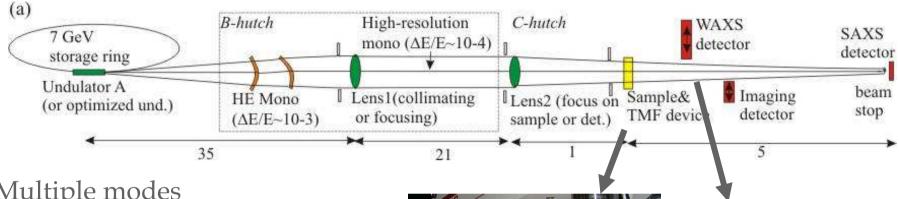
ESRF, Grenoble, France

Big thanks to the organizers (Andy Götz and V. Armando Solé) for hosting this conference!


Overview

- SAXS Beam Lines at the APS
 - 1ID High-Energy SAXS/WAXS, Jon Almer
 - 5ID SAXS-WAXS, Stephen Weigand
 - 8-ID XPCS, Alec Sandy, Suresh Narayanan, Michael Sprung
 - 8-ID GISAXS, Jin Wang
 - 12-BM SAXS, Nadia Leyarovska, Randy Winans
 - 12-ID SAXS, Sönke Seifert, Randy Winans
 - 12-ID GISAXS, Byeongdu Lee , Randy Winans
 - 18-ID SAXS, Tom Irving, Liang Guo
 - 32-ID USAXS, Jan Ilavsky
- Current status and parameters
- Software in use by some instruments
- canSAS 1-D v1.0 XML Standard for SAS Data

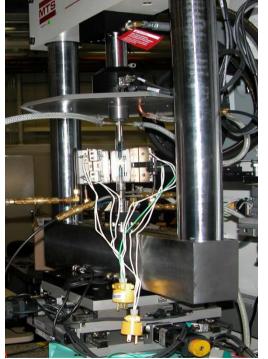
THE ADVANCED PHOTON SOURCE

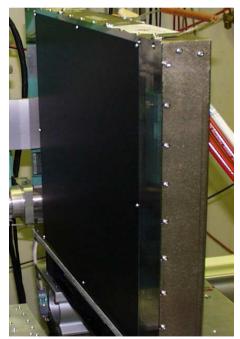

Sector Allocations & Disciplines
Source Configuration

Source Configuration

Slide(s) courtesy of Jon Almer

1-ID: HE-SAXS/WAXS




Multiple modes

- WAXS (down to d~1 A)
- SAXS (up to d~5000A)
- Imaging / radiography
- Flourescence

Transverse beam size down to ~1x10 µm² using lenses

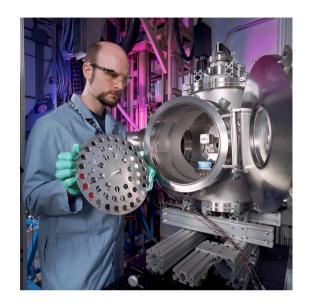
Diffraction tomography under development

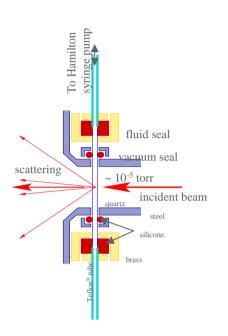
5-ID SAXS/WAXS Materials Science, polymers, solutions, and biology

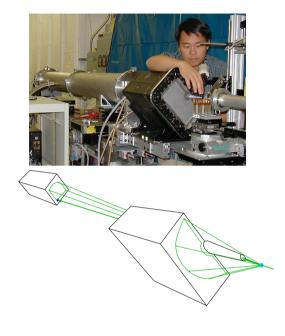
ultra-low-background pinhole-camera SAXS data down to 0.001 Å-1.

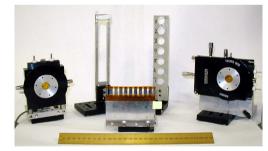
Energy (wavelength)	8 keV to 18 keV (1.5 Å to 0.7 Å)
Beam size V/H	50 μm × 50 μm to 1 mm × 2.5 mm
Camera length	136 mm to 10,000 mm
q range (d spacing)	0.001 Å ⁻¹ to 5 Å ⁻¹ (6200 Å to 1.26 Å)
SAXS detector	162 mm marCCD (Rayonix)
SAXS/WAXS detector	Roper Scientific®, up to 2 frames/sec

Dynamic studies of polymer crystallization, melting, and deformation

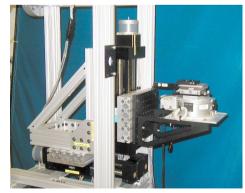

Five sets of slits Linkam thermal stage,

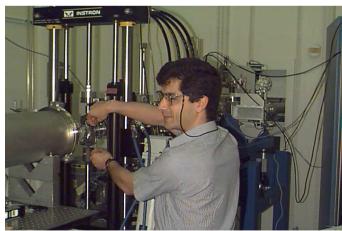

camera lengths up to 10 m Differential Scanning Calorimetry (DSC) cell,

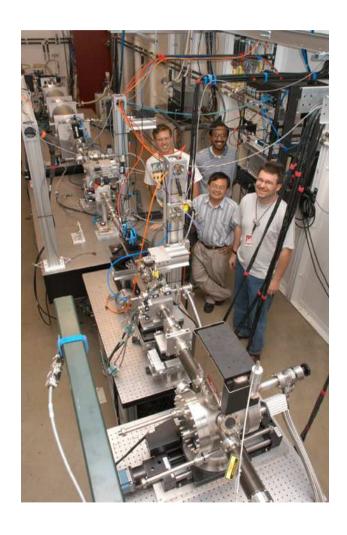

remote in-vacuum sample changer or Instron servo-hydraulic system


Uses Fit2D and user's preference software; Needs instrument software!

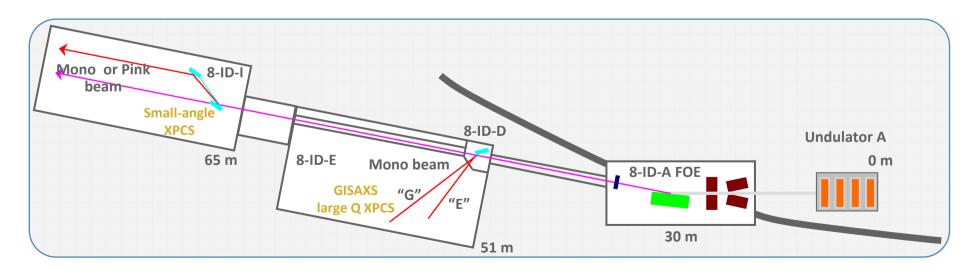
5-ID has many different sample environments



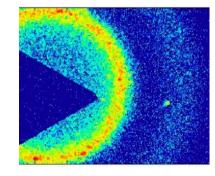



Denis T. Keane Steven Weigand Qing Ma Diane Sandberg W. Mike Guise

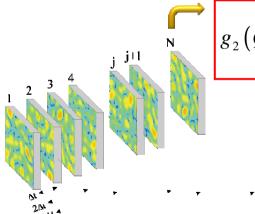
2010-01-12 Jemian: ESRF Workshop on HDF5 as hyperspectral data analysis format


8-ID has XPCS and GISAXS

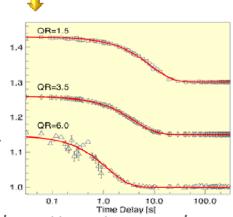
- APS X-ray Operations and Research (XOR)
 beamline since 2003
- Part of the APS Time Resolved Research (TRR)
 Group managed by Jin Wang
- Fully operational with 80% General User (GU) time each cycle
- Staffed with 3 beamline scientists with complementary expertise in the beamline's scientific theme areas
 - Suresh Narayanan
 - Alec Sandy
 - Michael Sprung


8-ID layout

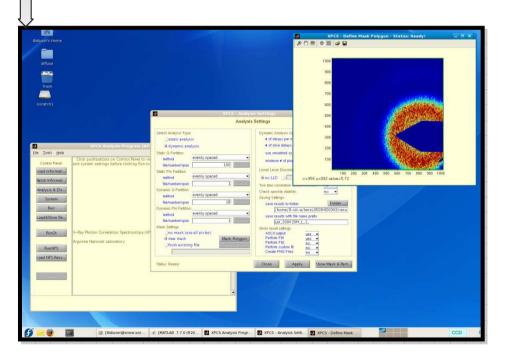
- Undulator beamline supporting 2 scientific theme areas:
 - Grazing-incidence small-angle x-ray scattering (GISAXS)
 - ≈ 30% General User (GU) time
 - Dedicated in-vacuum set-up
 - X-ray photon correlation spectroscopy (XPCS)
 - ≈ 70% General User (GU) time
 - Only other similar facility worldwide is at the ESRF
- Most 8-ID user groups from physics, chemistry, chemical engineering, polymer and materials science and engineering disciplines

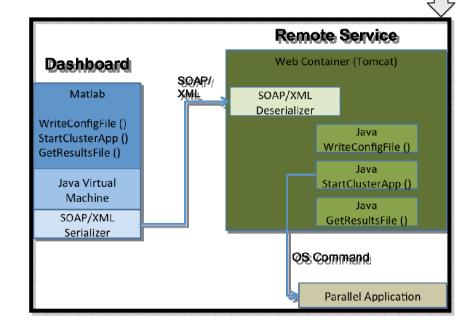


8-ID XPCS: X-ray Photon Correlation Spectroscopy dynamic studies


- X-ray photon correlation spectroscopy (XPCS) is the x-ray analog of dynamic light scattering permitting characterization of the slow dynamics of condensed matter at the nanoscale
 - 1. Illuminate disordered sample with a (partially) coherent x-ray beam
 - 2. Collect speckle pattern versus time with a high resolution and high gain area detector

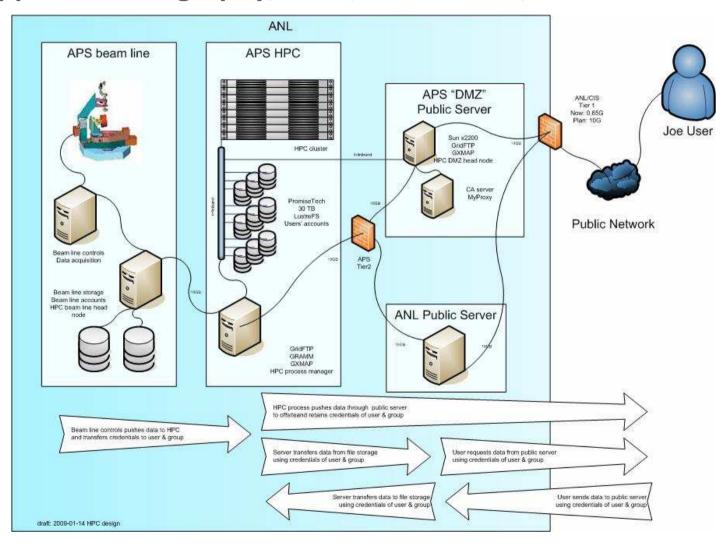
3rd SR


$$g_2(Q,\tau) \equiv \frac{\langle I(Q,t)I(Q,t+\tau)\rangle}{\langle I\rangle^2}$$



Time autocorrelate fluctuating speckle pattern to reveal sample dynamics

8-ID XPCS software overview


- Matlab used to create an overarching user-friendly interface to underlying hardware, firmware and software (Zhang Jiang)
 - EPICS channel access for camera/FPGA control
 - Java → SOAP/XML calls for directing and monitoring cluster calculations
 - Time autocorrelations continue to be available locally in Matlab

APS XOR High-Performance Computing Environment

Supports: Tomography, XPCS, 3-D HE-XRD, 3-D microdiffraction

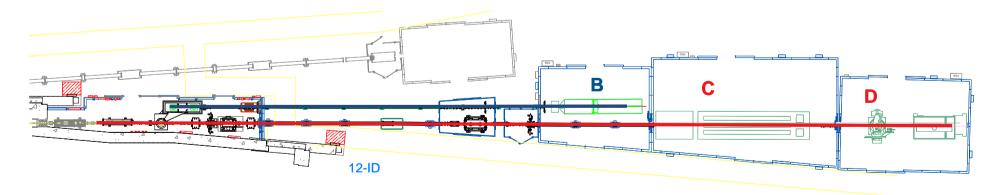
12-ID Upgrade

Two Beamlines with Canted Undulators materials science, chemistry

- C/D Line (4.5 36 Kev, pink beam)

 SAXS/WAXS/GISAXS/GIXAS in situ, time resolved [12-ID-C]

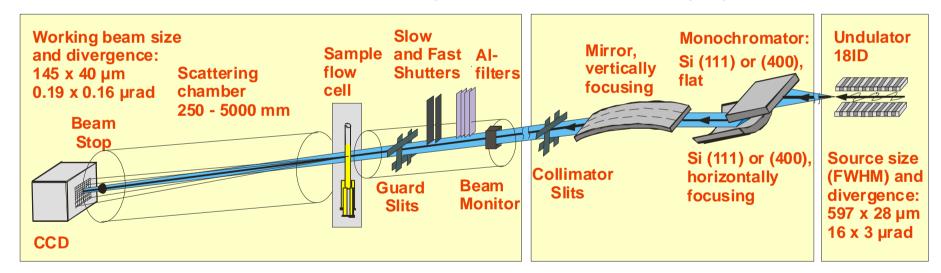
 Surface Scattering MOCVD, surface diffraction [12-ID-D]
- B Line (7.4 13.9 Kev)

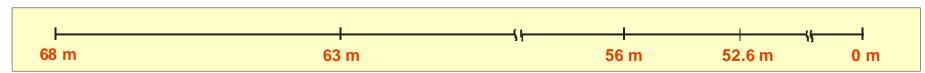

 SAXS/WAXS/GISAXS rapid adjustable Q [12-ID-B]

GISAXS Cell

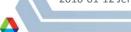
Detectors

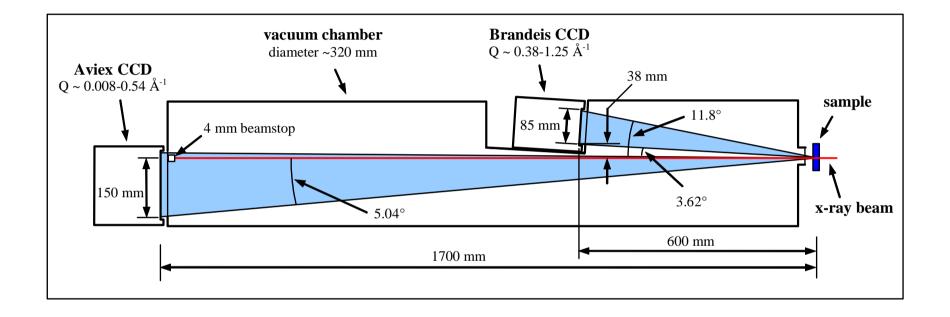
APS/XOR Platinum mosaic CCD Pilatus 2M and wide angle (300K)




18-ID SAXS biology, solutions

Slide(s) courtesy of Tom Irving

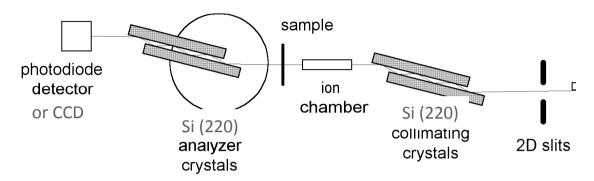

- A NIH-supported research center for the study of partially ordered and disordered biological materials. Operated by the Illinois Institute of Technology
- Comprises an undulator based beamline, (18-ID) associated laboratory and computational facilities.
- Available to all scientists on basis of peer-reviewed beamtime proposals



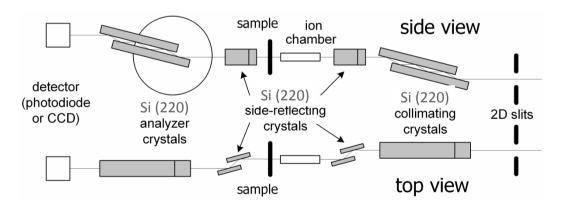
18-ID BioCAT parameters

- Total X-ray flux 1-2.5 x10¹³ photons/s
- Focal spot size ranges from < 50 μm vertical and < 160 μm horizontal to ~3 x 1.5 mm
- Wide energy range (4-39 keV)
- Rapid 1 keV energy scans in < 15 seconds
- First order resolution > 1500 Å (1/d)
- Order to order resolution > 10000 Å (1/d)
- High sensitivity (~photon counting), high spatial resolution (~60 micron psf, 39 micron pixels) CCD detectors
- Pilatus 100k detector for time resolved studies

Future 18-ID BioCAT SAXS/WAXS Instrument


Use two detectors to cover entire q-range from 0.008 Å⁻¹ to 1.25 Å⁻¹

To be implemented fall 2009/spring 2010


Will be MUCH more efficient than separate SAXS/WAXS runs

32-ID USAXS materials science, larger structures, USAXS imaging

1-D collimated Bonse-Hart Camera (slit smeared)

2-D collimated Bonse-Hart Camera

32-ID USAXS parameters

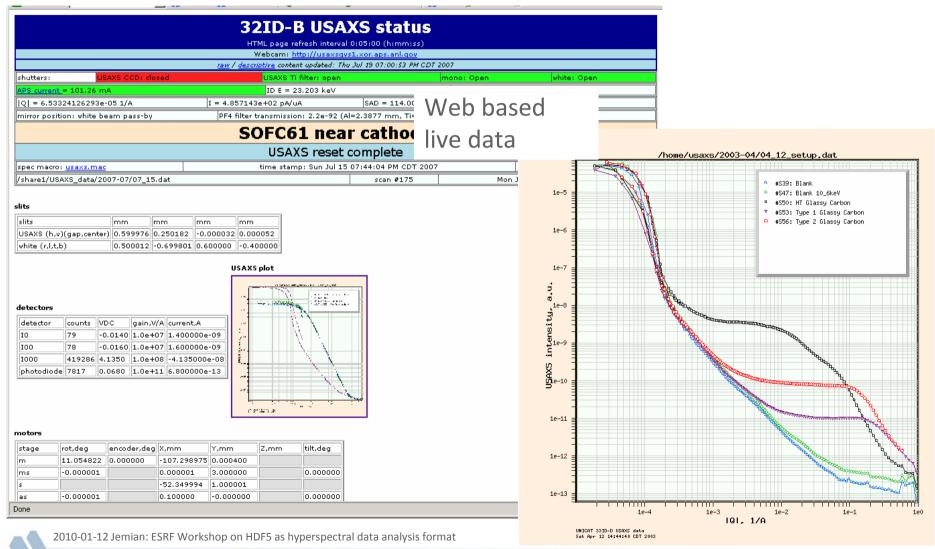
- General purpose USAXS instrument using Bonse-Hart design
- Used to examine structures in the few micrometer scale
- Intensity and Q range:
 - ca. 10¹³ ph/s (monochromatic) incident on sample
 - Up to 9 decades of intensity range
 - 0.00015 A⁻¹ to 1 A⁻¹ Q range (0.5 nm ----> >1 micron)
 - Both 1-D (slit smeared) and 2-D collimated ("2D-USAXS") geometries available
 - 10 min/scan (shortest scans down to 3 minutes)
 - Flexible beam size (1 x 2 mm ---> 0.02 x 0.2 mm)

Mid-2010 USAXS moves to 15ID beamline (ChemMat CARS):

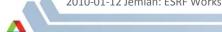
Available pinhole camera SAXS at the same time

Planned upgrade to high-Q small pinhole SAXS camera integrated into

USAXS (using Pilatus detector)


NO GUP time in 2010-2

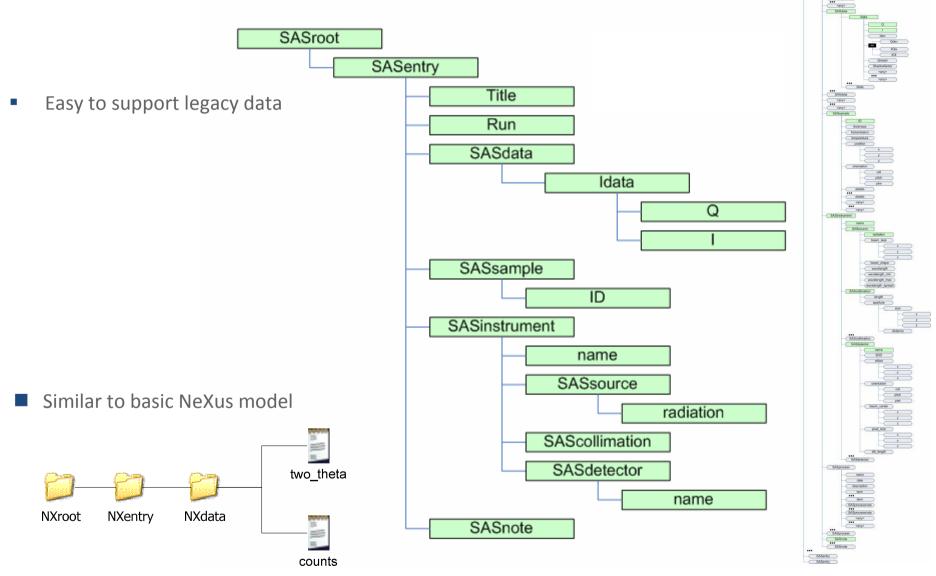
32-ID USAXS software and support


- "One stop shop" –
 user friendly source for absolute calibrated SAS <u>results</u>
- Combine:
 - USAXS instrument robust & reliable hardware
 - Software support quick, user friendly, and <u>scientifically correct</u> method to extract from <u>measurements</u> useful & publishable <u>results</u>.
 - Data reduction software ("Indra") in IgorPro
 - Data evaluation software ("Irena") in IgorPro
 - User support "from cradle to grave" from exp. preparation to publication.
- Significant fraction of facility users are not SAS experts, but materials scientists, chemists, physicist, geologists... Students...
- 15 20 publications/year (with 6 9 weeks of beamtime/year)

Web-based view of live USAXS data acquisition with automated, preliminary data reduction

Additional software to talk about ...

- canSAS (Collective Action for Nomadic Small-Angle Scatterers) is a forum of users, software developers, and facility staff who have gathered together to discuss better sharing of SAS data analysis software.
- One recent effort was the standard for saving 1-D data in XML
- Members of the 1-D Format Working Group "Tribe":
- Pete Jemian (APS), Steve King (ISIS), Andrew Jackson (NIST), Ken Littrell (ORNL), Andy Nelson (ANSTO), Ron Ghosh (ILL, retired), Jan Ilavsky (APS)



Motivation for canSAS 1-D XML Data Standard

- Better sharing of SAS data analysis software
 - primary data, I(Q): NOTE: small data sets
 - metadata --- any other descriptive information about the sample, measurement, instrument, source, processing, or analysis steps.
- Significant SAS community need satisfied by standardizing a format
 - robust
 - self-describing
 - text-based (human readable, editable, import using simple commands)
 - reduced one-dimensional small-angle scattering data, I(Q)
 - Communicate data between users of our facilities
- minimal verbosity
- programs need not:
 - recognise advanced structure in the file
 - require advanced programming interfaces.
- Provenance (record of processing steps and analysis results)
- Compatible, where possible, with NeXus

cansas1d/1.0 The Minimum Set of information

canSAS 1-D Standard: Comments & Conclusions

- Good idea long time in the making
 - Agreement on standard between many user facilities
 - Flexible design tailored for specific community (small-angle)
 - Format allows access to data by variety of methods
 - Multiple measurements may be included within a single XML file
- Perceived competition with other standards bodies (NeXus, CIF)
- XML is a good method to store scientific data
 - Rich tools & support exist
 - XSLT to transform between different standards
- The cansas1d/1.0 standard meets the objectives for a 1D standard, incorporating experiment metadata, and parameters and results of processing or analysis steps.
- Higher dimensionality
 - 2-D area detectors, Time series, Other parametric studies
 - Rely on NeXus NXsas

http://www.smallangles.net/wgwiki/index.php/cansas1d_documentation

Thank you for your attention!

