
CBFlibCBFlib
An API for CBF/imgCIF

Crystallographic Binary Files with ASCII Support

Version 0.7.3
2 October 2002

by

Paul J. Ellis
Stanford Synchrotron Radiation Laboratory

ellis@ssrl.slac.stanford.edu

and

Herbert J. Bernstein
Bernstein + Sons

yaya@bernstein-plus-sons.com

CBFlib 0.7.2.3 Page - ii

Before using this software, please read the following notices for important disclaimers and the IUCr Policy
on the Use of the Crystallographic Information File (CIF) and for other important information.

CBFlib Notices

The following notice applies to this work as a whole and to the works included within it:

Creative endeavors depend on the lively exchange of ideas. There are laws and customs which
establish rights and responsibilities for authors and the users of what authors create. This notice is not
intended to prevent you from using the software and documents in this package, but to ensure that there are
no misunderstandings about terms and conditions of such use. Please read the following notice carefully.
If you do not understand any portion of this notice, please seek appropriate professional legal advice before
making use of the software and documents included in this software package. In addition to whatever other
steps you may be obliged to take to respect the intellectual property rights of the various parties involved, if
you do make use of the software and documents in this package, please give credit where credit is due by
citing this package, its authors and the URL or other source from which you obtained it, or equivalent
primary references in the literature with the same authors.

Some of the software and documents included within this software package are the intellectual
property of various parties, and placement in this package does not in any way imply that any such rights
have in any way been waived or diminished.

With respect to any software or documents for which a copyright exists, ALL RIGHTS ARE
RESERVED TO THE OWNERS OF SUCH COPYRIGHT.

Even though the authors of the various documents and software found here have made a good faith
effort to ensure that the documents are correct and that the software performs according to its
documentation, and we would greatly appreciate hearing of any problems you may encounter, the programs
and documents any files created by the programs are provided **AS IS** without any warranty as to
correctness, merchantability or fitness for any particular or general use. THE RESPONSIBILITY FOR
ANY ADVERSE CONSEQUENCES FROM THE USE OF PROGRAMS OR DOCUMENTS OR
ANY FILE OR FILES CREATED BY USE OF THE PROGRAMS OR DOCUMENTS LIES
SOLELY WITH THE USERS OF THE PROGRAMS OR DOCUMENTS OR FILE OR FILES
AND NOT WITH AUTHORS OF THE PROGRAMS OR DOCUMENTS.

CBFlib 0.7.2.3 Page - iii

The IUCr Policy for the Protection and the Promotion of the STAR File and CIF Standards for
Exchanging and Archiving Electronic Data.

Overview: The Crystallographic Information File (CIF)[1] is a standard for information interchange
promulgated by the International Union of Crystallography (IUCr). CIF (Hall, Allen & Brown, 1991) is the
recommended method for submitting publications to Acta Crystallographica Section C and reports of
crystal structure determinations to other sections of Acta Crystallographica and many other journals. The
syntax of a CIF is a subset of the more general STAR File[2] format. The CIF and STAR File approaches
are used increasingly in the structural sciences for data exchange and archiving, and are having a significant
influence on these activities in other fields.

Statement of intent: The IUCr's interest in the STAR File is as a general data interchange standard for
science, and its interest in the CIF, a conformant derivative of the STAR File, is as a concise data exchange
and archival standard for crystallography and structural science.

Protection of the standards: To protect the STAR File and the CIF as standards for interchanging and
archiving electronic data, the IUCr, on behalf of the scientific community,

• holds the copyrights on the standards themselves,

• owns the associated trademarks and service marks, and

• holds a patent on the STAR File.

These intellectual property rights relate solely to the interchange formats, not to the data contained therein,
nor to the software used in the generation, access or manipulation of the data.

Promotion of the standards: The sole requirement that the IUCr, in its protective role, imposes on
software purporting to process STAR File or CIF data is that the following conditions be met prior to sale
or distribution.

• Software claiming to read files written to either the STAR File or the CIF standard must be able
to extract the pertinent data from a file conformant to the STAR File syntax, or the CIF syntax,
respectively.

• Software claiming to write files in either the STAR File, or the CIF, standard must produce files
that are conformant to the STAR File syntax, or the CIF syntax, respectively.

• Software claiming to read definitions from a specific data dictionary approved by the IUCr must
be able to extract any pertinent definition which is conformant to the dictionary definition
language (DDL)[3] associated with that dictionary.

The IUCr, through its Committee on CIF Standards, will assist any developer to verify that software meets
these conformance conditions.

Glossary of terms

[1] CIF: is a data file conformant to the file syntax defined at http://www.iucr.org/iucr-
top/cif/spec/index.html

[2] STAR File: is a data file conformant to the file syntax defined at http://www.iucr.org/iucr-
top/cif/spec/star/index.html

[3] DDL: is a language used in a data dictionary to define data items in terms of "attributes". Dictionaries
currently approved by the IUCr, and the DDL versions used to construct these dictionaries, are listed at
http://www.iucr.org/iucr-top/cif/spec/ddl/index.html

Last modified: 30 September 2000
IUCr Policy Copyright (C) 2000 International Union of Crystallography

CBFlib 0.7.2.3 Page - iv

CBFlib V0.1 Notice

The following Diclaimer Notice applies to CBFlib V0.1, from which this version is derived.

The items furnished herewith were developed under the sponsorship of the U.S. Government.
Neither the U.S., nor the U.S. D.O.E., nor the Leland Stanford Junior University, nor their employees,
makes any warranty, express or implied, or assumes any liability or responsibility for accuracy,
completeness or usefulness of any information, apparatus, product or process disclosed, or represents that
its use will not infringe privately-owned rights. Mention of any product, its manufacturer, or suppliers shall
not, nor is it intended to, imply approval, disapproval, or fitness for any particular use. The U.S. and the
University at all times retain the right to use and disseminate the furnished items for any purpose
whatsoever.

Notice 91 02 01

CIFPARSE Notice

Portions of this software are loosely based on the CIFPARSE software package from the NDB at Rutgers
University (see http://ndbserver.rutgers.edu/NDB/mmcif/software). CIFPARSE is part of the NDBQUERY
application, a program component of the Nucleic Acid Database Project [H. M. Berman, W. K. Olson, D.
L. Beveridge, J. K. Westbrook, A. Gelbin, T. Demeny, S. H. Shieh, A. R. Srinivasan, and B. Schneider.
(1992). The Nucleic Acid Database: A Comprehensive Relational Database of Three-Dimensional
Structures of Nucleic Acids. Biophys J., 63, 751-759.], whose cooperation is gratefully acknowledged,
especially in the form of design concepts created by J. Westbrook.

Please be aware of the following notice in the CIFPARSE API:

 This software is provided WITHOUT WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED.
RUTGERS MAKE NO REPRESENTATION OR WARRANTY THAT THE SOFTWARE WILL
NOT INFRINGE ANY PATENT, COPYRIGHT OR OTHER PROPRIETARY RIGHT.

CBFlib 0.7.2.3 Page - v

MPACK Notice

Portions of this library are adapted from the "mpack/munpack version 1.5" routines, written by John G.
Myers. Mpack and munpack are utilities for encoding and decoding (respectively) binary files in MIME
(Multipurpose
Internet Mail Extensions) format mail messages. The mpack software used is (C) Copyright 1993,1994 by
Carnegie Mellon University, All Rights Reserved, and is subject to the following notice:

 Permission to use, copy, modify, distribute, and sell this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Carnegie Mellon University not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. Carnegie Mellon University makes no representations
about the suitability of this software for any purpose. It is provided "as is" without express or implied
warranty. CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON
UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

MD5 Notice

The following notice applies to the message digest software in md5.h and md5.c which are optionally used
by this library. To that extent, this library is a work "derived from the RSA Data Security, Inc. MD5
Message-Digest Algorithm".

The software in md5.h and md5.c is Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved, and is subject to the following notice:

 License to copy and use this software is granted provided that it is identified as the "RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or
this function. License is also granted to make and use derivative works provided that such works are
identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work. RSA Data Security, Inc. makes no representations
concerning either the merchantability of this software or the suitability of this software for any particular
purpose. It is provided "as is" without express or implied warranty of any kind. These notices must be
retained in any copies of any part of this documentation and/or software.

CBFlib 0.7.2.3 Page - vi

Version History

Version Date By Description
0.1 Apr. 1998 PJE This was the first CBFlib release. It supported binary CBF files

using binary strings.
0.2 Aug. 1998 HJB This release added ascii imgCIF support using MIME-encoded

binary sections, added the option of MIME headers for the
binary strings was well. MIME code adapted from mpack 1.5.
Added hooks needed for
DDL1-style names without categories.

0.3 Sep. 1998 PJE This release cleaned up the changes made for version 0.2,
allowing multi-threaded use of the code, and removing
dependence on the mpack package.

0.4 Nov. 1998 HJB This release merged much of the message digest code into the
general file reading and writing to reduce the number of passes.
More consistency checking between the MIME header and the
binary header was introduced. The size in the MIME header was
adjusted to agree with the version 0.2 documentation.

0.5 Dec. 1998 PJE This release greatly increased the speed of processing by
allowing for deferred digest evaluation.

0.6 Jan. 1999 HJB This release removed the redundant information (binary id, size,
compression id) from a binary header when there is a MIME
header, removed the unused repeat argument, and made the
memory allocation for buffering and tables with many rows
sensitive to the current memory allocation already used.

0.6.1 Feb. 2001 HP (per
HJB)

This release fixed a memory leak due to misallocation by size of
cbf_handle instead of cbf_handle_struct

0.7 Mar. 2001 PJE This release added high-level instructions based on the imgCIF
dictionary version 1.1.

0.7.1 Mar. 2001 PJE The high-level functions were revised to permit future expansion
to files with multiple images.

0.7.2 Apr. 2001 HJB Fixup for latest dictionary and to make documentation current
0.7.2.1 May 2001 PJE This release corrected an if nesting error in the prior mod to

cbf_cimple.c.
0.7.3 Oct. 2002 PJE This release modified cbf_simple.c to reorder image data on read

so that the indices are always increasing in memory (this
behavior was undefined previously).

Known Problems

This version does not have support for byte-offset or predictor compression. Code is needed to support
array sub-sections.

CBFlib 0.7.2.3 Page - vii

Foreword

In order to work with CBFlib, you need the source code, in the form of a “gzipped” tar, CBFlib.tar.gz.
Uncompress this file. Place it in an otherwise empty directory, and unpack it with tar. You will also need
Paul Ellis's sample MAR345 image, example.mar2300, as sample data. This file can also be found at
http://biosg1.slac.stanford.edu/biosg1-users/ellis/Public/. Place that file in the top level directory (one level
up from the source code). Adjust the definition of CC in Makefile to point to your C compiler, and then

make all
make tests

This release has been tested on an SGI under IRIX 6.4 and on a PowerPC under Linux-ppc 2.1.24.

We have included examples of CBF/imgCIF files produced by CBFlib, an updated version of John
Westbrook's DDL2-compliant CBF Extensions Dictionary, and of Andy Hammersley's CBF definition,
updated to become a DRAFT CBF/ImgCIF DEFINITION.

This is just a proposal. Please be careful about basing any code on this until and unless there has been a
general agreement.

CBFlib 0.7.2.3 Page - ix

Contents

1. Introduction 1

2. Function descriptions 3

2.1 General description
2.1.1 CBF handles
2.1.2 CBF goniometer handles
2.1.3 CBF detector handles
2.1.4 Return values

2.2 Reading and writing files containing binary sections
2.2.1 Reading binary sections
2.2.2 Writing binary sections
2.2.3 Summary of reading and writing files containing binary sections

2.3 Low-level function prototypes 7

2.3.1 cbf_make_handle
2.3.2 cbf_free_handle
2.3.3 cbf_read_file
2.3.4 cbf_write_file
2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.12 cbf_delete_row
2.3.13 cbf_set_datablockname
2.3.14 cbf_reset_datablocks
2.3.15 cbf_reset_datablock
2.3.16 cbf_reset_category
2.3.17 cbf_remove_datablock
2.3.18 cbf_remove_category
2.3.19 cbf_remove_column
2.3.20 cbf_remove_row
2.3.21 cbf_rewind_datablock
2.3.22 cbf_rewind_category
2.3.23 cbf_rewind_column
2.3.24 cbf_rewind_row
2.3.25 cbf_next_datablock
2.3.26 cbf_next_category
2.3.27 cbf_next_column
2.3.28 cbf_next_row
2.3.29 cbf_find_datablock
2.3.30 cbf_find_category
2.3.31 cbf_find_column
2.3.32 cbf_find_row
2.3.33 cbf_find_nextrow
2.3.34 cbf_count_datablocks
2.3.35 cbf_count_categories

CBFlib 0.7.2.3 Page - x

2.3.36 cbf_count_columns
2.3.37 cbf_count_rows
2.3.38 cbf_select_datablock
2.3.39 cbf_select_category
2.3.40 cbf_select_column
2.3.41 cbf_select_row
2.3.42 cbf_datablock_name
2.3.43 cbf_category_name
2.3.44 cbf_column_name
2.3.45 cbf_row_number
2.3.46 cbf_get_value
2.3.47 cbf_set_value
2.3.48 cbf_get_integervalue
2.3.49 cbf_set_integervalue
2.3.50 cbf_get_doublevalue
2.3.51 cbf_set_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.53 cbf_get_integerarray
2.3.54 cbf_set_integerarray
2.3.55 cbf_failnez
2.3.56 cbf_onfailnez

2.4 High-level function prototypes (new for version 0.7) 64

2.4.1 cbf_read_template
2.4.2 cbf_get_diffrn_id
2.4.3 cbf_set_diffrn_id
2.4.4 cbf_get_crystal_id
2.4.5 cbf_set_crystal_id
2.4.6 cbf_get_wavelength
2.4.7 cbf_set_wavelength
2.4.8 cbf_get_polarization
2.4.9 cbf_set_polarization
2.4.10 cbf_get_divergence
2.4.11 cbf_set_divergence
2.4.12 cbf_count_elements
2.4.13 cbf_get_element_id
2.4.14 cbf_get_gain
2.4.15 cbf_set_gain
2.4.16 cbf_get_overload
2.4.17 cbf_set_overload
2.4.18 cbf_get_integration_time
2.4.19 cbf_set_integration_time
2.4.20 cbf_get_time
2.4.21 cbf_set_time
2.4.22 cbf_get_date
2.4.23 cbf_set_date
2.4.24 cbf_set_current_time
2.4.25 cbf_get_image_size
2.4.26 cbf_get_image
2.4.27 cbf_set_image
2.4.28 cbf_get_axis_setting
2.4.29 cbf_set_axis_setting
2.4.30 cbf_construct_goniometer
2.4.31 cbf_free_goniometer
2.4.32 cbf_get_rotation_axis

CBFlib 0.7.2.3 Page - xi

2.4.33 cbf_get_rotation_range
2.4.34 cbf_rotate_vector
2.4.35 cbf_get_reciprocal
2.4.36 cbf_construct_detector
2.4.37 cbf_free_detector
2.4.38 cbf_get_beam_center
2.4.39 cbf_get_detector_distance
2.4.40 cbf_get_detector_normal
2.4.41 cbf_get_pixel_coordinates
2.4.42 cbf_get_pixel_normal
2.4.43 cbf_get_pixel_area

3. File format 107

3.1 General description

3.2 Format of the binary sections
3.2.1 Format of imgCIF binary sections
3.2.2 Format of CBF binary sections

3.3 Compression schemes
3.3.1 Canonical-code compression
3.3.2 CCP4-style compression

4. Installation 113

5. Example programs 115

CBFlib 0.7.2.3 Page - 1

1. Introduction

CBFlib is a library of ANSI-C functions providing a simple mechanism for accessing Crystallographic
Binary Files (CBF files) and Image-supporting CIF (imgCIF) files. The CBFlib API is loosely based on the
CIFPARSE API for mmCIF files. Like CIFPARSE, CBFlib does not perform any semantic integrity checks
and simply provides functions to create, read, modify and write CBF binary data files and imgCIF ASCII
data files.

CBFlib 0.7.2.3 Page - 3

2. Function descriptions

2.1 General description

Almost all of the CBFlib functions receive a value of type cbf_handle (a CBF handle) as the first argument.
Several of the high-level CBFlib functions dealing with geometry receive a value of type cbf_goniometer (a
handle for a CBF goniometer object) or cbf_detector (a handle for a CBF detector object).

All functions return an integer equal to 0 for success or an error code for failure.

2.1.1 CBF handles

CBFlib permits a program to use multiple CBF objects simultaneously. To identify the CBF object on
which a function will operate, CBFlib uses a value of type cbf_handle.

Most functions in the library expect a value of type cbf_handle as the first argument.

The function cbf_make_handle creates and initializes a new CBF handle.

The function cbf_free_handle destroys a handle and frees all memory associated with the corresponding
CBF object.

2.1.2 CBF goniometer handles

To represent the goniometer used to orient a sample, CBFlib uses a value of type cbf_goniometer.

A goniometer object is created and initialized from a CBF object using the function
cbf_construct_goniometer.

The function cbf_free_goniometer destroys a goniometer handle and frees all memory associated with the
corresponding object.

2.1.3 CBF detector handles

To represent a detector surface mounted on a positioning system, CBFlib uses a value of type cbf_detector.

A goniometer object is created and initialized from a CBF object using the function
cbf_construct_detector.

The function cbf_free_detector destroys a detector handle and frees all memory associated with the
corresponding object.

2.1.4 Return values

All of the CBFlib functions return 0 on success and an error code on failure. The error codes are:

 CBF_FORMAT The file format is invalid
 CBF_ALLOC Memory allocation failed
 CBF_ARGUMENT Invalid function argument
 CBF_ASCII The value is ASCII (not binary)

CBFlib 0.7.2.3 Page - 4

 CBF_BINARY The value is binary (not ASCII)
 CBF_BITCOUNT The expected number of bits does not match the actual

number written
 CBF_ENDOFDATA The end of the data was reached before the end of the array
 CBF_FILECLOSE File close error
 CBF_FILEOPEN File open error
 CBF_FILEREAD File read error
 CBF_FILESEEK File seek error
 CBF_FILETELL File tell error
 CBF_FILEWRITE File write error
 CBF_IDENTICAL A data block with the new name already exists
 CBF_NOTFOUND The data block, category, column or row does not exist
 CBF_OVERFLOW The number read cannot fit into the destination argument. The

destination has been set to the nearest value.
 CBF_UNDEFINED The requested number is not defined (e.g. 0/0; new for version

0.7).
 CBF_NOTIMPLEMENTED The requested functionality is not yet implemented (New for

version 0.7).

If more than one error has occurred, the error code is the logical OR of the individual error codes.

2.2 Reading and writing files containing binary sections

2.2.1 Reading binary sections

The current version of CBFlib only decompresses a binary section from disk when requested by the
program.

When a file containing one or more binary sections is read, CBFlib saves the file pointer and the position of
the binary section within the file and then jumps past the binary section. When the program attempts to
access the binary data, CBFlib sets the file position back to the start of the binary section and then reads
the data.

For this scheme to work:

1. The file must be a random-access file opened in binary mode (fopen (," rb")).
2. The program must not close the file. CBFlib will close the file using fclose () when it is no longer
needed.

At present, this also means that a program cant read a file and then write back to the same file. This
restriction will be eliminated in a future version.

When reading an imgCIF vs a CBF, the difference is detected automatically.

2.2.2 Writing binary sections

When a program passes CBFlib a binary value, the data is compressed to a temporary file. If the CBF
object is subsequently written to a file, the data is simply copied from the temporary file to the output file.

The output file can be of any type. If the program indicates to CBFlib that the file is a random-access and
readable, CBFlib will conserve disk space by closing the temporary file and using the output file as the
location at which the binary value is stored.

For this option to work:

CBFlib 0.7.2.3 Page - 5

1. The file must be a random-access file opened in binary update mode (fopen (, "w+b")).
2. The program must not close the file. CBFlib will close the file using fclose () when it is no longer
needed.

If this option is not used:

1. CBFlib will continue using the temporary file.
2. CBFlib will not close the file. This is the responsibility of the main program.

2.2.3 Summary of reading and writing files containing binary sections

1. Open disk files to read using the mode "rb".
2. If possible, open disk files to write using the mode "w+b" and tell CBFlib that it can use the file as a
buffer.
3. Do not close any files read by CBFlib or written by CBFlib with buffering turned on.
4. Do not attempt to read from a file, then write to the same file.

CBFlib 0.7.2.3 Page - 7

2.3 Low-level function prototypes

2.3.1 cbf_make_handle

PROTOTYPE

#include "cbf.h"

int cbf_make_handle (cbf_handle *handle);

DESCRIPTION

cbf_make_handle creates and initializes a new internal CBF object. All other CBFlib functions operating
on this object receive the CBF handle as the first argument.

ARGUMENTS

handle Pointer to a CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.2 cbf_free_handle

CBFlib 0.7.2.3 Page - 8

2.3.2 cbf_free_handle

PROTOTYPE

#include "cbf.h"

int cbf_free_handle (cbf_handle handle);

DESCRIPTION

cbf_free_handle destroys the CBF object specified by the handle and frees all associated memory.

ARGUMENTS

handle CBF handle to free.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.1 cbf_make_handle

CBFlib 0.7.2.3 Page - 9

2.3.3 cbf_read_file

PROTOTYPE

#include "cbf.h"

int cbf_read_file (cbf_handle handle, FILE *file, int headers);

DESCRIPTION

cbf_read_file reads the CBF or CIF file file into the CBF object specified by handle.

headers controls the interprestation of binary section headers of imgCIF files.

MSG_DIGEST: Instructs CBFlib to check that the digest of the binary section

matches any header value. If the digests do not match, the call will
return CBF_FORMAT. This evaluation and comparison is delayed (a
"lazy" evaluation) to ensure maximal processing efficiency. If an
immediately evaluation is required, see MSG_DIGESTNOW, below.

MSG_DIGESTNOW: Instructs CBFlib to check that the digest of the binary section
matches any header value. If the digests do not match, the call will
return CBF_FORMAT. This evaluation and comparison is performed
during initial parsing of the section to ensure timely error reporting at
the expense of processing efficiency. If a more efficient delayed
("lazy") evaluation is required, see MSG_DIGESTNOW, below.

MSG_NODIGEST: Do not check the digest (default).

CBFlib defers reading binary sections as long as possible. In the current version of CBFlib, this means that:

1. The file must be a random-access file opened in binary mode (fopen (, "rb")).
2. The program must not close the file. CBFlib will close the file using fclose () when it is no longer
needed.

These restrictions may change in a future release.

ARGUMENTS

handle CBF handle.
file Pointer to a file descriptor.
headers Controls interprestation of binary section headers.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.4 cbf_write_file

CBFlib 0.7.2.3 Page - 10

2.3.4 cbf_write_file

PROTOTYPE

#include "cbf.h"

int cbf_write_file (cbf_handle handle, FILE *file, int readable, int ciforcbf, int headers, int encoding);

DESCRIPTION

cbf_write_file writes the CBF object specified by handle into the file file.

Unlike cbf_read_file, the file does not have to be random-access.

If the file is random-access and readable, readable can be set to non-0 to indicate to CBFlib that the file can
be used as a buffer to conserve disk space. If the file is not random-access or not readable, readable must
be 0.

If readable is non-0, CBFlib will close the file when it is no longer required otherwise this is the
responsibility of the program.

ciforcbf selects the format in which the binary sections are written:

CIF Write an imgCIF file.
CBF Write a CBF file (default). headers selects the type of header used in

CBF binary sections and selects whether message digests are
generated.

The value of headers can be a logical OR of any of:

MIME_HEADERS Use MIME-type headers (default).
MIME_NOHEADERS Use a simple ASCII headers.
MSG_DIGEST Generate message digests for binary data validation.
MSG_NODIGEST Do not generate message digests (default).

encoding selects the type of encoding used for binary sections and the type of line-termination in imgCIF
files. The value can be a logical OR of any of:

ENC_BASE64 Use BASE64 encoding (default).
ENC_QP Use QUOTED-PRINTABLE encoding.
ENC_BASE8 Use BASE8 (octal) encoding.
ENC_BASE10 Use BASE10 (decimal) encoding.
ENC_BASE16 Use BASE16 (hexadecimal) encoding.
ENC_FORWARD For BASE8, BASE10 or BASE16 encoding, map bytes to words

forward (1234) (default on little-endian machines).
ENC_BACKWARD Map bytes to words backward (4321) (default on big-endian

machines).
ENC_CRTERM Terminate lines with CR.
ENC_LFTERM Terminate lines with LF (default).

CBFlib 0.7.2.3 Page - 11

ARGUMENTS

handle CBF handle.
file Pointer to a file descriptor.
readable If non-0: this file is random-access and readable and can be used as a

buffer.
ciforcbf Selects the format in which the binary sections are written

(CIF/CBF).
headers Selects the type of header in CBF binary sections and message digest

generation.
encoding Selects the type of encoding used for binary sections and the type of

line-termination in imgCIF files.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.3 cbf_read_file

CBFlib 0.7.2.3 Page - 12

2.3.5 cbf_new_datablock

PROTOTYPE

#include "cbf.h"

int cbf_new_datablock (cbf_handle handle, const char *datablockname);

DESCRIPTION

cbf_new_datablock creates a new data block with name datablockname and makes it the current data
block.

If a data block with this name already exists, the existing data block becomes the current data block.

ARGUMENTS

handle CBF handle.
datablockname The name of the new data block.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.12 cbf_set_datablockname
2.3.17 cbf_remove_datablock

CBFlib 0.7.2.3 Page - 13

2.3.6 cbf_force_new_data_block

PROTOTYPE

#include "cbf.h"

int cbf_force_new_datablock (cbf_handle handle, const char *datablockname);

DESCRIPTION

cbf_force_new_datablock creates a new data block with name datablockname and makes it the current
data block. Duplicate data block names are allowed.

Even if a data block with this name already exists, a new data block is created and becomes the current data
block.

ARGUMENTS

handle CBF handle.
datablockname The name of the new data block.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.12 cbf_set_datablockname
2.3.17 cbf_remove_datablock

CBFlib 0.7.2.3 Page - 14

2.3.7 cbf_new_category

PROTOTYPE

#include "cbf.h"

int cbf_new_category (cbf_handle handle, const char *categoryname);

DESCRIPTION

cbf_new_category creates a new category in the current data block with name categoryname and makes it
the current category.

If a category with this name already exists, the existing category becomes the current category.

ARGUMENTS
handle CBF handle.
categoryname The name of the new category.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.18 cbf_remove_category

CBFlib 0.7.2.3 Page - 15

2.3.8 cbf_force_new_category

PROTOTYPE

#include "cbf.h"

int cbf_force_new_category (cbf_handle handle, const char *categoryname);

DESCRIPTION

cbf_force_new_category creates a new category in the current data block with name categoryname and
makes it the current category. Duplicate category names are allowed.

Even if a category with this name already exists, a new category of the same name is created and becomes
the current category. The allows for the creation of unlooped tag/value lists drawn from the same category.

ARGUMENTS

handle CBF handle.
categoryname The name of the new category.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.18 cbf_remove_category

CBFlib 0.7.2.3 Page - 16

2.3.9 cbf_new_column

PROTOTYPE

#include "cbf.h"

int cbf_new_column (cbf_handle handle, const char *columnname);

DESCRIPTION

cbf_new_column creates a new column in the current category with name columnname and makes it the
current column.

If a column with this name already exists, the existing column becomes the current category.

ARGUMENTS
handle CBF handle.
columnname The name of the new column.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.19 cbf_remove_column

CBFlib 0.7.2.3 Page - 17

2.3.10 cbf_new_row

PROTOTYPE

#include "cbf.h"

int cbf_new_row (cbf_handle handle);

DESCRIPTION

cbf_new_row adds a new row to the current category and makes it the current row.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.11 cbf_insert_row
2.3.12 cbf_delete_row
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 18

2.3.11 cbf_insert_row

PROTOTYPE

#include "cbf.h"

int cbf_insert_row (cbf_handle handle, unsigned int rownumber);

DESCRIPTION

cbf_insert_row adds a new row to the current category. The new row is inserted as row rownumber and
existing rows starting from rownumber are moved up by 1. The new row becomes the current row.

If the category has fewer than rownumber rows, the function returns CBF_NOTFOUND.

The row numbers start from 0.

ARGUMENTS

handle CBF handle.
rownumber The row number of the new row.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.9 cbf_new_column
2.3.10 cbf_new_row
2.3.12 cbf_delete_row
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 19

2.3.12 cbf_delete_row

PROTOTYPE

#include "cbf.h"

int cbf_delete_row (cbf_handle handle, unsigned int rownumber);

DESCRIPTION

cbf_delete_row deletes a row from the current category. Rows starting from rownumber +1 are moved
down by 1. If the current row was higher than rownumber, or if the current row is the last row, it will also
move down by 1.

The row numbers start from 0.

ARGUMENTS

handle CBF handle.
rownumber The number of the row to delete.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.17 cbf_remove_datablock
2.3.18 cbf_remove_category
2.3.19 cbf_remove_column
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 20

2.3.13 cbf_set_datablockname

PROTOTYPE

#include "cbf.h"

int cbf_set_datablockname (cbf_handle handle, const char *datablockname);

DESCRIPTION

cbf_set_datablockname changes the name of the current data block to datablockname.

If a data block with this name already exists (comparison is case-insensitive), the function returns
CBF_IDENTICAL.

ARGUMENTS
handle CBF handle.
datablockname The new data block name.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.14 cbf_reset_datablocks
2.3.15 cbf_reset_datablock
2.3.17 cbf_remove_datablock
2.3.42 cbf_datablock_name

CBFlib 0.7.2.3 Page - 21

2.3.14 cbf_reset_datablocks

PROTOTYPE

#include "cbf.h"

int cbf_reset_datablocks (cbf_handle handle);

DESCRIPTION

cbf_reset_datablocks deletes all categories from all data blocks.

The current data block does not change.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.15 cbf_reset_datablock
2.3.18 cbf_remove_category

CBFlib 0.7.2.3 Page - 22

2.3.15 cbf_reset_datablock

PROTOTYPE

#include "cbf.h"

int cbf_reset_datablock (cbf_handle handle);

DESCRIPTION

cbf_reset_datablock deletes all categories from the current data block.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.14 cbf_reset_datablocks
2.3.18 cbf_remove_category

CBFlib 0.7.2.3 Page - 23

2.3.16 cbf_reset_category

PROTOTYPE

#include "cbf.h"

int cbf_reset_category (cbf_handle handle);

DESCRIPTION

cbf_reset_category deletes all columns and rows from current category.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.16 cbf_reset_category
2.3.19 cbf_remove_column
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 24

2.3.17 cbf_remove_datablock

PROTOTYPE

#include "cbf.h"

int cbf_remove_datablock (cbf_handle handle);

DESCRIPTION

cbf_remove_datablock deletes the current data block.

The current data block becomes undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.5 cbf_new_datablock
2.3.6 cbf_force_new_datablock
2.3.18 cbf_remove_category
2.3.19 cbf_remove_column
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 25

2.3.18 cbf_remove_category

PROTOTYPE

#include "cbf.h"

int cbf_remove_category (cbf_handle handle);

DESCRIPTION

cbf_remove_category deletes the current category.

The current category becomes undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.7 cbf_new_category
2.3.8 cbf_force_new_category
2.3.17 cbf_remove_datablock
2.3.19 cbf_remove_column
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 26

2.3.19 cbf_remove_column

PROTOTYPE

#include "cbf.h"

int cbf_remove_column (cbf_handle handle);

DESCRIPTION

cbf_remove_column deletes the current column.

The current column becomes undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.9 cbf_new_column
2.3.17 cbf_remove_datablock
2.3.18 cbf_remove_category
2.3.20 cbf_remove_row

CBFlib 0.7.2.3 Page - 27

2.3.20 cbf_remove_row

PROTOTYPE

#include "cbf.h"

int cbf_remove_row (cbf_handle handle);

DESCRIPTION

cbf_remove_row deletes the current row in the current category.

If the current row was the last row, it will move down by 1, otherwise, it will remain the same.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.10 cbf_new_row
2.3.11 cbf_insert_row
2.3.17 cbf_remove_datablock
2.3.18 cbf_remove_category
2.3.19 cbf_remove_column
2.3.12 cbf_delete_row

CBFlib 0.7.2.3 Page - 28

2.3.21 cbf_rewind_datablock

PROTOTYPE

#include "cbf.h"

int cbf_rewind_datablock (cbf_handle handle);

DESCRIPTION

cbf_rewind_datablock makes the first data block the current data block.

If there are no data blocks, the function returns CBF_NOTFOUND.

The current category becomes undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.22 cbf_rewind_category
2.3.19 cbf_rewind_column
2.3.24 cbf_rewind_row
2.3.25 cbf_next_datablock

CBFlib 0.7.2.3 Page - 29

2.3.22 cbf_rewind_category

PROTOTYPE

#include "cbf.h"

int cbf_rewind_category (cbf_handle handle);

DESCRIPTION

cbf_rewind_category makes the first category in the current data block the current category.

If there are no categories, the function returns CBF_NOTFOUND.

The current column and row become undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.21 cbf_rewind_datablock
2.3.19 cbf_rewind_column
2.3.24 cbf_rewind_row
2.3.26 cbf_next_category

CBFlib 0.7.2.3 Page - 30

2.3.23 cbf_rewind_column

PROTOTYPE

#include "cbf.h"

int cbf_rewind_column (cbf_handle handle);

DESCRIPTION

cbf_rewind_column makes the first column in the current category the current column.

If there are no columns, the function returns CBF_NOTFOUND.

The current row is not affected.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.21 cbf_rewind_datablock
2.3.22 cbf_rewind_category
2.3.24 cbf_rewind_row
2.3.27 cbf_next_column

CBFlib 0.7.2.3 Page - 31

2.3.24 cbf_rewind_row

PROTOTYPE

#include "cbf.h"

int cbf_rewind_row (cbf_handle handle);

DESCRIPTION

cbf_rewind_row makes the first row in the current category the current row.

If there are no rows, the function returns CBF_NOTFOUND.

The current column is not affected.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.21 cbf_rewind_datablock
2.3.22 cbf_rewind_category
2.3.19 cbf_rewind_column
2.3.28 cbf_next_row

CBFlib 0.7.2.3 Page - 32

2.3.25 cbf_next_datablock

PROTOTYPE

#include "cbf.h"

int cbf_next_datablock (cbf_handle handle);

DESCRIPTION

cbf_next_datablock makes the data block following the current data block the current data block.

If there are no more data blocks, the function returns CBF_NOTFOUND.

The current category becomes undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.21 cbf_rewind_datablock
2.3.26 cbf_next_category
2.3.27 cbf_next_column
2.3.28 cbf_next_row

CBFlib 0.7.2.3 Page - 33

2.3.26 cbf_next_category

PROTOTYPE

#include "cbf.h"

int cbf_next_category (cbf_handle handle);

DESCRIPTION

cbf_next_category makes the category following the current category in the current data block the current
category.

If there are no more categories, the function returns CBF_NOTFOUND.

The current column and row become undefined.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.22 cbf_rewind_category
2.3.25 cbf_next_datablock
2.3.27 cbf_next_column
2.3.27 cbf_next_row

CBFlib 0.7.2.3 Page - 34

2.3.27 cbf_next_column

PROTOTYPE

#include "cbf.h"

int cbf_next_column (cbf_handle handle);

DESCRIPTION

cbf_next_column makes the column following the current column in the current category the current
column.

If there are no more columns, the function returns CBF_NOTFOUND.

The current row is not affected.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.19 cbf_rewind_column
2.3.25 cbf_next_datablock
2.3.26 cbf_next_category
2.3.28 cbf_next_row

CBFlib 0.7.2.3 Page - 35

2.3.28 cbf_next_row

PROTOTYPE

#include "cbf.h"

int cbf_next_row (cbf_handle handle);

DESCRIPTION

cbf_next_row makes the row following the current row in the current category the current row.

If there are no more rows, the function returns CBF_NOTFOUND.

The current column is not affected.

ARGUMENTS

handle CBF handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.24 cbf_rewind_row
2.3.25 cbf_next_datablock
2.3.26 cbf_next_category
2.3.27 cbf_next_column

CBFlib 0.7.2.3 Page - 36

2.3.29 cbf_find_datablock

PROTOTYPE

#include "cbf.h"

int cbf_find_datablock (cbf_handle handle, const char *datablockname);

DESCRIPTION

cbf_find_datablock makes the data block with name datablockname the current data block.

The comparison is case-insensitive.

If the data block does not exist, the function returns CBF_NOTFOUND.

The current category becomes undefined.

ARGUMENTS

handle CBF handle.
datablockname The name of the data block to find.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.21 cbf_rewind_datablock
2.3.25 cbf_next_datablock
2.3.30 cbf_find_category
2.3.31 cbf_find_column
2.3.32 cbf_find_row
2.3.42 cbf_datablock_name

CBFlib 0.7.2.3 Page - 37

2.3.30 cbf_find_category

PROTOTYPE

#include "cbf.h"

int cbf_find_category (cbf_handle handle, const char *categoryname);

DESCRIPTION

cbf_find_category makes the category in the current data block with name
categoryname the current category.

The comparison is case-insensitive.

If the category does not exist, the function returns CBF_NOTFOUND.

The current column and row become undefined.

ARGUMENTS

handle CBF handle.
categoryname The name of the category to find.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.22 cbf_rewind_category
2.3.26 cbf_next_category
2.3.29 cbf_find_datablock
2.3.31 cbf_find_column
2.3.32 cbf_find_row
2.3.43 cbf_category_name

CBFlib 0.7.2.3 Page - 38

2.3.31 cbf_find_column

PROTOTYPE

#include "cbf.h"

int cbf_find_column (cbf_handle handle, const char *columnname);

DESCRIPTION

cbf_find_column makes the columns in the current category with name columnname the current column.

The comparison is case-insensitive.

If the column does not exist, the function returns CBF_NOTFOUND.

The current row is not affected.

ARGUMENTS

handle CBF handle.
columnname The name of column to find.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.19 cbf_rewind_column
2.3.27 cbf_next_column
2.3.29 cbf_find_datablock
2.3.30 cbf_find_category
2.3.32 cbf_find_row
2.3.44 cbf_column_name

CBFlib 0.7.2.3 Page - 39

2.3.32 cbf_find_row

PROTOTYPE

#include "cbf.h"

int cbf_find_row (cbf_handle handle, const char *value);

DESCRIPTION

cbf_find_row makes the first row in the current column with value value the current row.

The comparison is case-sensitive.

If a matching row does not exist, the function returns CBF_NOTFOUND.

The current column is not affected.

ARGUMENTS

handle CBF handle.
value The value of the row to find.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.24 cbf_rewind_row
2.3.28 cbf_next_row
2.3.29 cbf_find_datablock
2.3.30 cbf_find_category
2.3.31 cbf_find_column
2.3.33 cbf_find_nextrow
2.3.46 cbf_get_value

CBFlib 0.7.2.3 Page - 40

2.3.33 cbf_find_nextrow

PROTOTYPE

#include "cbf.h"

int cbf_find_nextrow (cbf_handle handle, const char *value);

DESCRIPTION

cbf_find_nextrow makes the makes the next row in the current column with value value the current row.
The search starts from the row following the last row found with cbf_find_row or cbf_find_nextrow, or
from the current row if the current row was defined using any other function.

The comparison is case-sensitive.

If no more matching rows exist, the function returns CBF_NOTFOUND.

The current column is not affected.

ARGUMENTS

handle CBF handle.
value the value to search for.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.24 cbf_rewind_row
2.3.28 cbf_next_row
2.3.29 cbf_find_datablock
2.3.30 cbf_find_category
2.3.31 cbf_find_column
2.3.32 cbf_find_row
2.3.46 cbf_get_value

CBFlib 0.7.2.3 Page - 41

2.3.34 cbf_count_datablocks

PROTOTYPE

#include "cbf.h"

int cbf_count_datablocks (cbf_handle handle, unsigned int *datablocks);

DESCRIPTION

cbf_count_datablocks puts the number of data blocks in *datablocks .

ARGUMENTS

handle CBF handle.
datablocks Pointer to the destination data block count.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.35 cbf_count_categories
2.3.36 cbf_count_columns
2.3.37 cbf_count_rows
2.3.38 cbf_select_datablock

CBFlib 0.7.2.3 Page - 42

2.3.35 cbf_count_categories

PROTOTYPE

#include "cbf.h"

int cbf_count_categories (cbf_handle handle, unsigned int *categories);

DESCRIPTION

cbf_count_categories puts the number of categories in the current data block in *categories.

ARGUMENTS

handle CBF handle.
categories Pointer to the destination category count.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.34 cbf_count_datablocks
2.3.36 cbf_count_columns
2.3.37 cbf_count_rows
2.3.39 cbf_select_category

CBFlib 0.7.2.3 Page - 43

2.3.36 cbf_count_columns

PROTOTYPE

#include "cbf.h"

int cbf_count_columns (cbf_handle handle, unsigned int *columns);

DESCRIPTION

cbf_count_columns puts the number of columns in the current category in
*columns.

ARGUMENTS

handle CBF handle.
columns Pointer to the destination column count.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.34 cbf_count_datablocks
2.3.35 cbf_count_categories
2.3.37 cbf_count_rows
2.3.40 cbf_select_column

CBFlib 0.7.2.3 Page - 44

2.3.37 cbf_count_rows

PROTOTYPE

#include "cbf.h"

int cbf_count_rows (cbf_handle handle, unsigned int *rows);

DESCRIPTION

cbf_count_rows puts the number of rows in the current category in *rows.

ARGUMENTS

handle CBF handle.
rows Pointer to the destination row count.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.34 cbf_count_datablocks
2.3.35 cbf_count_categories
2.3.36 cbf_count_columns
2.3.41 cbf_select_row

CBFlib 0.7.2.3 Page - 45

2.3.38 cbf_select_datablock

PROTOTYPE

#include "cbf.h"

int cbf_select_datablock (cbf_handle handle, unsigned int datablock);

DESCRIPTION

cbf_select_datablock selects data block number datablock as the current data block.

The first data block is number 0.

If the data block does not exist, the function returns CBF_NOTFOUND.

ARGUMENTS

handle CBF handle.
datablock Number of the data block to select.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.34 cbf_count_datablocks
2.3.39 cbf_select_category
2.3.40 cbf_select_column
2.3.41 cbf_select_row

CBFlib 0.7.2.3 Page - 46

2.3.39 cbf_select_category

PROTOTYPE

#include "cbf.h"

int cbf_select_category (cbf_handle handle, unsigned int category);

DESCRIPTION

cbf_select_category selects category number category in the current data block as the current category.

The first category is number 0.

The current column and row become undefined.

If the category does not exist, the function returns CBF_NOTFOUND.

ARGUMENTS

handle CBF handle.
category Number of the category to select.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.35 cbf_count_categories
2.3.38 cbf_select_datablock
2.3.40 cbf_select_column
2.3.41 cbf_select_row

CBFlib 0.7.2.3 Page - 47

2.3.40 cbf_select_column

PROTOTYPE

#include "cbf.h"

int cbf_select_column (cbf_handle handle, unsigned int column);

DESCRIPTION

cbf_select_column selects column number column in the current category as the current column.

The first column is number 0.

The current row is not affected

If the column does not exist, the function returns CBF_NOTFOUND.

ARGUMENTS

handle CBF handle.
column Number of the column to select.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.36 cbf_count_columns
2.3.38 cbf_select_datablock
2.3.39 cbf_select_category
2.3.41 cbf_select_row

CBFlib 0.7.2.3 Page - 48

2.3.41 cbf_select_row

PROTOTYPE

#include "cbf.h"

int cbf_select_row (cbf_handle handle, unsigned int row);

DESCRIPTION

cbf_select_row selects row number row in the current category as the current row.

The first row is number 0.

The current column is not affected

If the row does not exist, the function returns CBF_NOTFOUND.

ARGUMENTS

handle CBF handle.
row Number of the row to select.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.37 cbf_count_rows
2.3.38 cbf_select_datablock
2.3.39 cbf_select_category
2.3.40 cbf_select_column

CBFlib 0.7.2.3 Page - 49

2.3.42 cbf_datablock_name

PROTOTYPE

#include "cbf.h"

int cbf_datablock_name (cbf_handle handle, const char **datablockname);

DESCRIPTION

cbf_datablock_name sets *datablockname to point to the name of the current data block.

The data block name will be valid as long as the data block exists and has not been renamed.

The name must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
datablockname Pointer to the destination data block name pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.29 cbf_find_datablock

CBFlib 0.7.2.3 Page - 50

2.3.43 cbf_category_name

PROTOTYPE

#include "cbf.h"

int cbf_category_name (cbf_handle handle, const char **categoryname);

DESCRIPTION

cbf_category_name sets *categoryname to point to the name of the current category of the current data
block.

The category name will be valid as long as the category exists.

The name must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
categoryname Pointer to the destination category name pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.30 cbf_find_category

CBFlib 0.7.2.3 Page - 51

2.3.44 cbf_column_name

PROTOTYPE

#include "cbf.h"

int cbf_column_name (cbf_handle handle, const char **columnname);

DESCRIPTION

cbf_column_name sets *columnname to point to the name of the current column of the current category.

The column name will be valid as long as the column exists.

The name must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
columnname Pointer to the destination column name pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.31 cbf_find_column

CBFlib 0.7.2.3 Page - 52

2.3.45 cbf_row_number

PROTOTYPE

#include "cbf.h"

int cbf_row_number (cbf_handle handle, unsigned int *row);

DESCRIPTION

cbf_row_number sets *row to the number of the current row of the current
category.

ARGUMENTS

handle CBF handle.
row Pointer to the destination row number.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.41 cbf_select_row

CBFlib 0.7.2.3 Page - 53

2.3.46 cbf_get_value

PROTOTYPE

#include "cbf.h"

int cbf_get_value (cbf_handle handle, const char **value);

DESCRIPTION

cbf_get_value sets *value to point to the ASCII value of the item at the current column and row.

If the value is not ASCII, the function returns CBF_BINARY.

The value will be valid as long as the item exists and has not been set to a new value.

The value must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
value Pointer to the destination value pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.47 cbf_set_value
2.3.48 cbf_get_integervalue
2.3.50 cbf_get_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.53 cbf_get_integerarray

CBFlib 0.7.2.3 Page - 54

2.3.47 cbf_set_value

PROTOTYPE

#include "cbf.h"

int cbf_set_value (cbf_handle handle, const char *value);

DESCRIPTION

cbf_set_value sets the item at the current column and row to the ASCII value value.

ARGUMENTS

handle CBF handle.
value ASCII value.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.49 cbf_set_integervalue
2.3.51 cbf_set_doublevalue
2.3.54 cbf_set_integerarray

CBFlib 0.7.2.3 Page - 55

2.3.48 cbf_get_integervalue

PROTOTYPE

#include "cbf.h"

int cbf_get_integervalue (cbf_handle handle, int *number);

DESCRIPTION

cbf_get_integervalue sets *number to the value of the ASCII item at the current column and row
interpreted as a decimal integer.

If the value is not ASCII, the function returns CBF_BINARY.

ARGUMENTS

handle CBF handle.
number pointer to the number.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.49 cbf_set_integervalue
2.3.50 cbf_get_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.53 cbf_get_integerarray

CBFlib 0.7.2.3 Page - 56

2.3.49 cbf_set_integervalue

PROTOTYPE

#include "cbf.h"

int cbf_set_integervalue (cbf_handle handle, int number);

DESCRIPTION

cbf_set_integervalue sets the item at the current column and row to the integer value number written as a
decimal ASCII string.

ARGUMENTS

handle CBF handle.
number Integer value.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.47 cbf_set_value
2.3.48 cbf_get_integervalue
2.3.49 cbf_set_integervalue
2.3.51 cbf_set_doublevalue
2.3.54 cbf_set_integerarray

CBFlib 0.7.2.3 Page - 57

2.3.50 cbf_get_doublevalue

PROTOTYPE

#include "cbf.h"

int cbf_get_doublevalue (cbf_handle handle, double *number);

DESCRIPTION

cbf_get_doublevalue sets *number to the value of the ASCII item at the current column and row
interpreted as a decimal floating-point number.

If the value is not ASCII, the function returns CBF_BINARY.

ARGUMENTS

handle CBF handle.
number Pointer to the destination number.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.48 cbf_get_integervalue
2.3.51 cbf_set_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.53 cbf_get_integerarray

CBFlib 0.7.2.3 Page - 58

2.3.51 cbf_set_doublevalue

PROTOTYPE

#include "cbf.h"

int cbf_set_doublevalue (cbf_handle handle, const char *format, double number);

DESCRIPTION

cbf_set_doublevalue sets the item at the current column and row to the floating-point value number
written as an ASCII string with the format specified by format as appropriate for the printf function.

ARGUMENTS

handle CBF handle.
format Format for the number.
number Floating-point value.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.47 cbf_set_value
2.3.49 cbf_set_integervalue
2.3.50 cbf_get_doublevalue
2.3.54 cbf_set_integerarray

CBFlib 0.7.2.3 Page - 59

2.3.52 cbf_get_integerarrayparameters

PROTOTYPE

#include "cbf.h"

int cbf_get_integerarrayparameters (cbf_handle handle, unsigned int * compression, int *binary_id,
size_t *elsize, int *elsigned, int *elunsigned, size_t *elements, int *minelement, int *maxelement);

DESCRIPTION

cbf_get_integerarrayparameters sets *compression, *binary_id, *elsize, *elsigned, *elunsigned,
*elements, *minelement and *maxelement to values read from the binary value of the item at the current
column and row. This provides all the arguments needed for a subsequent call to cbf_set_integerarray, if
a copy of the arry is to be made into another CIF or CBF.

If the value is not binary, the function returns CBF_ASCII.

ARGUMENTS

handle CBF handle.
compression Compression method used.
elsize Size in bytes of each array element.
binary_id Pointer to the destination integer binary identifier.
elsigned Pointer to an integer. Set to 1 if the elements can be read as signed

integers.
elunsigned Pointer to an integer. Set to 1 if the elements can be read as unsigned

integers.
elements Pointer to the destination number of elements.
minelement Pointer to the destination smallest element.
maxelement Pointer to the destination largest element.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.48 cbf_get_integervalue
2.3.50 cbf_get_doublevalue
2.3.53 cbf_get_integerarray
2.3.54 cbf_set_integerarray

CBFlib 0.7.2.3 Page - 60

2.3.53 cbf_get_integerarray

PROTOTYPE

#include "cbf.h"

int cbf_get_integerarray (cbf_handle handle, int *binary_id, void *array, size_t elsize, int elsigned,
size_t elements, size_t *elements_read);

DESCRIPTION

cbf_get_integerarray reads the binary value of the item at the current column and row into an integer
array. The array consists of elements elements of elsize bytes each, starting at array. The elements are
signed if elsigned is non-0 and unsigned otherwise. *binary_id is set to the binary section identifier and
*elements_read to the number of elements actually read.

If any element in the binary data cant fit into the destination element, the destination is set the nearest
possible value.

If the value is not binary, the function returns CBF_ASCII.

If the requested number of elements cant be read, the function will read as many as it can and then return
CBF_ENDOFDATA.

Currently, the destination array must consist of chars, shorts or ints (signed or unsigned). If elsize is not
equal to sizeof (char), sizeof (short) or sizeof (int), the function returns CBF_ARGUMENT.

An additional restriction in the current version of CBFlib is that values too large to fit in an int are not
correctly decompressed. As an example, if the machine with 32-bit ints is reading an array containing a
value outside the range 0 .. 2^32-1 (unsigned) or -2^31 .. 2^31-1 (signed), the array will not be correctly
decompressed. This restriction will be removed in a future release.

ARGUMENTS

handle CBF handle.
binary_id Pointer to the destination integer binary identifier.
array Pointer to the destination array.
elsize Size in bytes of each destination array element.
elsigned Set to non-0 if the destination array elements are signed.
elements The number of elements to read.
elements_read Pointer to the destination number of elements actually read.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.46 cbf_get_value
2.3.48 cbf_get_integervalue
2.3.50 cbf_get_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.54 cbf_set_integerarray

CBFlib 0.7.2.3 Page - 61

2.3.54 cbf_set_integerarray

PROTOTYPE

#include "cbf.h"

int cbf_set_integerarray (cbf_handle handle, unsigned int compression, int binary_id, void *array, size_t
elsize, int elsigned, size_t elements);

DESCRIPTION

cbf_set_integerarray sets the binary value of the item at the current column and row to an integer array.
The array consists of elementselements of elsize bytes each, starting at array. The elements are signed if
elsigned is non-0 and unsigned otherwise. binary_id is the binary section identifier.

The array will be compressed using the compression scheme specifed bycompression. Currently, the
available schemes are:

CBF_CANONICAL Canonical-code compression (section 3.3.1)
CBF_PACKED CCP4-style packing (section 3.3.2)
CBF_NONE No compression. NOTE: This scheme is by far the slowest of the

three and uses much more disk space. It is intended for routine use
with small arrays only. With large arrays (like images) it should be
used only for debugging.

The values compressed are limited to 64 bits. If any element in the array is larger than 64 bits, the value
compressed is the nearest 64-bit value.

Currently, the source array must consist of chars, shorts or ints (signed or unsigned). If elsize is not equal
to sizeof (char), sizeof (short) or sizeof (int), the function returns CBF_ARGUMENT.

ARGUMENTS

handle CBF handle.
compression Compression method to use.
binary_id Integer binary identifier.
array Pointer to the source array.
elsize Size in bytes of each source array element.
elsigned Set to non-0 if the source array elements are signed.
elements The number of elements in the array.

RETURN VALUE

Returns an error code on failure or 0 for success.

SEE ALSO

2.3.47 cbf_set_value
2.3.49 cbf_set_integervalue
2.3.51 cbf_set_doublevalue
2.3.52 cbf_get_integerarrayparameters
2.3.53 cbf_get_integerarray

CBFlib 0.7.2.3 Page - 62

2.3.55 cbf_failnez

DEFINITION

#include "cbf.h"

#define cbf_failnez(f) {int err; err = (f); if (err) return err; }

DESCRIPTION

cbf_failnez is a macro used for error propagation throughout CBFlib. cbf_failnez executes the function f
and saves the returned error value. If the error value is non-0, cbf_failnez executes a return with the error
value as argument. If CBFDEBUG is defined, then a report of the error is also printed to the standard error
stream, stderr, in the form

CBFlib error f in "symbol"

where f is the decimal value of the error and symbol is the symbolic form.

ARGUMENTS

f Integer error value.

SEE ALSO

2.3.56 cbf_onfailnez

CBFlib 0.7.2.3 Page - 63

2.3.56 cbf_onfailnez

DEFINITION

#include "cbf.h"

#define cbf_onfailnez(f,c) {int err; err = (f); if (err) {{ c; }return err; }}

DESCRIPTION

cbf_onfailnez is a macro used for error propagation throughout CBFlib. cbf_onfailnez executes the
function f and saves the returned error value. If the error value is non-0, cbf_failnez executes first the
statement c and then a return with the error value as argument. If CBFDEBUG is defined, then a report of
the error is also printed to the standard error stream, stderr, in the form

CBFlib error f in "symbol"

where f is the decimal value of the error and symbol is the symbolic form.

ARGUMENTS

f integer function to execute.
c statement to execute on failure.

SEE ALSO

2.3.55 cbf_failnez

CBFlib 0.7.2.3 Page - 64

2.4 High-level function prototypes

2.4.1 cbf_read_template

PROTOTYPE

#include "cbf_simple.h"

int cbf_read_template (cbf_handle handle, FILE *file);

DESCRIPTION

cbf_read_template reads the CBF or CIF file file into the CBF object specified by handle and selects the
first datablock as the current datablock.

ARGUMENTS

handle Pointer to a CBF handle.
file Pointer to a file descriptor.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 65

2.4.2 cbf_get_diffrn_id

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_diffrn_id (cbf_handle handle, const char **diffrn_id);

DESCRIPTION

cbf_get_diffrn_id sets *diffrn_id to point to the ASCII value of the “diffrn.id” entry.

The diffrn_id will be valid as long as the item exists and has not been set to a new value.

The diffrn_id must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
diffrn_id Pointer to the destination value pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 66

2.4.3 cbf_set_diffrn_id

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_diffrn_id (cbf_handle handle, const char *diffrn_id);

DESCRIPTION

cbf_set_diffrn_id sets the “diffrn.id” entry of the current datablock to the ASCII value diffrn_id.

This function also changes corresponding “diffrn_id” entries in the “diffrn_source”, “diffrn_radiation”,
“diffrn_detector” and “diffrn_measurement” categories.

ARGUMENTS

handle CBF handle.
diffrn_id ASCII value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 67

2.4.4 cbf_get_crystal_id

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_crystal_id (cbf_handle handle, const char **crystal_id);

DESCRIPTION

cbf_get_crystal_id sets *crystal_id to point to the ASCII value of the “diffrn.crystal_id” entry.

If the value is not ASCII, the function returns CBF_BINARY.

The value will be valid as long as the item exists and has not been set to a new value.

The value must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
crystal_id Pointer to the destination value pointer.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 68

2.4.5 cbf_set_crystal_id

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_crystal_id (cbf_handle handle, const char *crystal_id);

DESCRIPTION

cbf_set_crystal_id sets the “diffrn.crystal_id” entry to the ASCII value crystal_id.

ARGUMENTS

handle CBF handle.
crystal_id ASCII value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 69

2.4.6 cbf_get_wavelength

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_wavelength (cbf_handle handle, double *wavelength);

DESCRIPTION

cbf_get_wavelength sets *wavelength to the current wavelength in Å.

ARGUMENTS

handle CBF handle.
wavelength Pointer to the destination.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 70

2.4.7 cbf_set_wavelength

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_wavelength (cbf_handle handle, double wavelength);

DESCRIPTION

cbf_set_wavelength sets the current wavelength in Å to wavelength.

ARGUMENTS

handle CBF handle.
wavelength Wavelength in Å.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 71

2.4.8 cbf_get_polarization

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_polarization (cbf_handle handle , double *polarizn_source_ratio,
double *polarizn_source_norm) ;

DESCRIPTION

cbf_get_polarization sets *polarizn_source_ratio and *polarizn_source_norm to the corresponding source
polarization parameters.

Either destination pointer may be NULL.

ARGUMENTS

handle CBF handle.
 polarizn_source_ratio Pointer to the destination polarizn_source_ratio.
 polarizn_source_norm Pointer to the destination polarizn_source_norm.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 72

2.4.9 cbf_set_polarization

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_polarization (cbf_handle handle, double polarizn_source_ratio,
double polarizn_source_norm);

DESCRIPTION

cbf_set_polarization sets the source polarization to the values specified by polarizn_source_ratio and
polarizn_source_norm.

ARGUMENTS

handle CBF handle.
 polarizn_source_ratio New value of polarizn_source_ratio.
 polarizn_source_norm New value of polarizn_source_norm.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 73

2.4.10 cbf_get_divergence

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_divergence (cbf_handle handle, double *div_x_source, double *div_y_source,
double *div_x_y_source);

DESCRIPTION

cbf_get_divergence sets *div_x_source, *div_y_source and *div_x_y_source to the corresponding source
divergence parameters.

Any of the destination pointers may be NULL.

ARGUMENTS

handle CBF handle.
div_x_source Pointer to the destination div_x_source.
div_y_source Pointer to the destination div_y_source.
div_x_y_source Pointer to the destination div_x_y_source.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 74

2.4.11 cbf_ set_divergence

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_divergence (cbf_handle handle, double div_x_source, double div_y_source,
double div_x_y_source);

DESCRIPTION

cbf_set_divergence sets the source divergence parameters to the values specified by div_x_source,
div_y_source and div_x_y_source.

ARGUMENTS

handle CBF handle.
div_x_source New value of div_x_source.
div_y_source New value of div_y_source.
div_x_y_source New value of div_x_y_source.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 75

2.4.12 cbf_count_elements

PROTOTYPE

#include "cbf_simple.h"

int cbf_count_elements (cbf_handle handle, unsigned int *elements);

DESCRIPTION

cbf_count_elements sets *elements to the number of detector elements.

ARGUMENTS

handle CBF handle.
elements Pointer to the destination count.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 76

2.4.13 cbf_get_element_id

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_element_id (cbf_handle handle, unsigned int element_number, const char **element_id);

DESCRIPTION

cbf_get_element_id sets *element_id to point to the ASCII value of the element_number’th
“diffrn_data_frame.detector_element_id” entry, counting from 0.

If the detector element does not exist, the function returns CBF_NOTFOUND.

The element_id will be valid as long as the item exists and has not been set to a new value.

The element_id must not be modified by the program in any way.

ARGUMENTS

handle CBF handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
element_id Pointer to the destination.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 77

2.4.14 cbf_get_gain

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_gain (cbf_handle handle, unsigned int element_number, double *gain, double *gain_esd);

DESCRIPTION

cbf_get_gain sets *gain and *gain_esd to the corresponding gain parameters for element number
element_number.

Either of the destination pointers may be NULL.

ARGUMENTS

handle CBF handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
gain Pointer to the destination gain.
gain_esd Pointer to the destination gain_esd.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 78

2.4.15 cbf_ set_gain

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_gain (cbf_handle handle, unsigned int element_number, double gain, double gain_esd);

DESCRIPTION

cbf_set_gain sets the gain of element number element_number to the values specified by gain and
gain_esd.

ARGUMENTS

handle CBF handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
gain New gain value.
gain_esd New gain_esd value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 79

2.4.16 cbf_get_overload

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_overload (cbf_handle handle, unsigned int element_number, double *overload);

DESCRIPTION

cbf_get_overload sets *overload to the overload value for element number element_number.

ARGUMENTS

handle CBF handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
overload Pointer to the destination overload.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 80

2.4.17 cbf_ set_overload

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_overload (cbf_handle handle, unsigned int element_number, double overload);

DESCRIPTION

cbf_set_overload sets the overload value of element number element_number to overload.

ARGUMENTS

handle CBF handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
overload New overload value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 81

2.4.18 cbf_get_integration_time

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_integration_time (cbf_handle handle, unsigned int reserved, double *time);

DESCRIPTION

cbf_get_integration_time sets *time to the integration time in seconds. The parameter reserved is
presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
time Pointer to the destination time.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 82

2.4.19 cbf_set_integration_time

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_integration_time (cbf_handle handle, unsigned int reserved, double time);

DESCRIPTION

cbf_set_integration_time sets the integration time in seconds to the value specified by time. The
parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
time Integration time in seconds.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 83

2.4.20 cbf_get_timestamp

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_timestamp (cbf_handle handle, unsigned int reserved, double *time, int *timezone);

DESCRIPTION

cbf_get_timestamp sets *time to the collection timestamp in seconds since January 1 1970. *timezone is
set to timezone difference from UTC in minutes. The parameter reserved is presently unused and should
be set to 0.

Either of the destination pointers may be NULL.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
time Pointer to the destination collection timestamp.
timezone Pointer to the destination timezone difference.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 84

2.4.21 cbf_set_timestamp

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_timestamp (cbf_handle handle, unsigned int reserved, double time, int timezone,
double precision);

DESCRIPTION

cbf_set_timestamp sets the collection timestamp in seconds since January 1 1970 to the value specified by
time. The timezone difference from UTC in minutes is set to timezone. If no timezone is desired, timezone
should be CBF_NOTIMEZONE. The parameter reserved is presently unused and should be set to 0.

The precision of the new timestamp is specified by the value precision in seconds. If precision is 0, the
saved timestamp is assumed accurate to 1 second.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
time Timestamp in seconds since January 1 1970.
timezone Timezone difference from UTC in minutes or CBF_NOTIMEZONE.
precision Timestamp precision in seconds.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 85

2.4.22 cbf_get_datestamp

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_datestamp (cbf_handle handle, unsigned int reserved, int *year, int *month, int *day,
int *hour, int *minute, double *second, int *timezone);

DESCRIPTION

cbf_get_datestamp sets *year, *month, *day, *hour, *minute and *second to the corresponding values of
the collection timestamp. *timezone is set to timezone difference from UTC in minutes. The parameter
reserved is presently unused and should be set to 0.

Any of the destination pointers may be NULL.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
year Pointer to the destination timestamp year.
month Pointer to the destination timestamp month (1-12).
day Pointer to the destination timestamp day (1-31).
hour Pointer to the destination timestamp hour (0-23).
minute Pointer to the destination timestamp minute (0-59).
second Pointer to the destination timestamp second (0-60.0).
timezone Pointer to the destination timezone difference from UTC in minutes.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 86

2.4.23 cbf_set_datestamp

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_datestamp (cbf_handle handle, unsigned int reserved, int year, int month, int day, int hour,
int minute, double second, int timezone, double precision);

DESCRIPTION

cbf_set_datestamp sets the collection timestamp in seconds since January 1 1970 to the value specified by
time. The timezone difference from UTC in minutes is set to timezone. If no timezone is desired, timezone
should be CBF_NOTIMEZONE. The parameter reserved is presently unused and should be set to 0.

The precision of the new timestamp is specified by the value precision in seconds. If precision is 0, the
saved timestamp is assumed accurate to 1 second.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
time Timestamp in seconds since January 1 1970.
timezone Timezone difference from UTC in minutes or CBF_NOTIMEZONE.
precision Timestamp precision in seconds.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 87

2.4.24 cbf_set_current_timestamp

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_current_timestamp (cbf_handle handle, unsigned int reserved, int timezone)

DESCRIPTION

cbf_set_current_timestamp sets the collection timestamp to the current time. The timezone difference
from UTC in minutes is set to timezone. If no timezone is desired, timezone should be
CBF_NOTIMEZONE. If no timezone is used, the timestamp will be UTC. The parameter reserved is
presently unused and should be set to 0.

The new timestamp will have a precision of 1 second.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
timezone Timezone difference from UTC in minutes or CBF_NOTIMEZONE.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 88

2.4.25 cbf_get_image_size

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_image_size (cbf_handle handle, unsigned int reserved, unsigned int element_number,
size_t *ndim1, size_t *ndim2);

DESCRIPTION

cbf_get_image_size sets *ndim1 and *ndim2 to the slow and fast dimensions of the image array for
element number element_number. If the array is 1-dimensional, *ndim1 will be set to the array size and
*ndim2 will be set to 1.

Either of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
ndim1 Pointer to the destination slow dimension.
ndim2 Pointer to the destination fast dimension.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 89

2.4.26 cbf_get_image

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_image (cbf_handle handle, unsigned int reserved, unsigned int element_number, void *array,
size_t elsize, int elsign, size_t ndim1, size_t ndim2);

DESCRIPTION

cbf_get_image reads the image array for element number element_number into an array. The array
consists of ndim1_ndim2 elements of elsize bytes each, starting at array. The elements are signed if
elsigned is non-0 and unsigned otherwise.

NEW for v0.7.2.3: Irrespective of whether the array indices were increasing or decreasing in the file, the
data will be read into memory with increasing indices. In prior versions, the array was read as written. To
retain the original behavior, #define the symbol CBF_0721_READS.

If the array is 1-dimensional, ndim1 should be the array size and ndim2 should be set to 1.

If any element in the binary data can’t fit into the destination element, the destination is set the nearest
possible value.

If the value is not binary, the function returns CBF_ASCII.

If the requested number of elements can’t be read, the function will read as many as it can and then return
CBF_ENDOFDATA.

Currently, the destination array must consist of chars, shorts or ints (signed or unsigned). If elsize is not
equal to sizeof (char), sizeof (short) or sizeof (int), the function returns CBF_ARGUMENT.

An additional restriction in the current version of CBFlib is that values too large to fit in an int are not
correctly decompressed. As an example, if the machine with 32-bit ints is reading an array containing a
value outside the range 0 .. 232-1 (unsigned) or -231 .. 231-1 (signed), the array will not be correctly
decompressed. This restriction will be removed in a future release.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
array Pointer to the destination array.
elsize Size in bytes of each destination array element.
elsigned Set to non-0 if the destination array elements are signed.
ndim1 Slow array dimension.
ndim2 Fast array dimension.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 90

2.4.27 cbf_set_image

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_image (cbf_handle handle, unsigned int reserved, unsigned int element_number,
unsigned int compression, void *array, size_t elsize, int elsign, size_t ndim1, size_t ndim2);

DESCRIPTION

cbf_set_image writes the image array for element number element_number. The array consists of
ndim1_ndim2 elements of elsize bytes each, starting at array. The elements are signed if elsigned is non-0
and unsigned otherwise.

If the array is 1-dimensional, ndim1 should be the array size and ndim2 should be set to 1.

The array will be compressed using the compression scheme specifed by compression. Currently, the
available schemes are:

CBF_CANONICAL Canonical-code compression (section 3.3.1)
CBF_PACKED CCP4-style packing (section 3.3.2)
CBF_NONE No compression.

The values compressed are limited to 64 bits. If any element in the array is larger than 64 bits, the value
compressed is the nearest 64-bit value.

Currently, the source array must consist of chars, shorts or ints (signed or unsigned). If elsize is not equal
to sizeof (char), sizeof (short) or sizeof (int), the function returns CBF_ARGUMENT.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.
compression Compression type.
array Pointer to the destination array.
elsize Size in bytes of each destination array element.
elsigned Set to non-0 if the destination array elements are signed.
ndim1 Slow array dimension.
ndim2 Fast array dimension.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 91

2.4.28 cbf_get_axis_setting

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_axis_setting (cbf_handle handle, unsigned int reserved, const char *axis_id, double *start,
double *increment);

DESCRIPTION

cbf_get_axis_setting sets *start and *increment to the corresponding values of the axis axis_id.

Either of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
axis_id Axis id.
start Pointer to the destination start value.
increment Pointer to the destination increment value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 92

2.4.29 cbf_set_axis_setting

PROTOTYPE

#include "cbf_simple.h"

int cbf_set_axis_setting (cbf_handle handle, unsigned int reserved, const char *axis_id, double start,
double increment);

DESCRIPTION

cbf_set_axis_setting sets the starting and increment values of the axis axis_id to start and increment.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

handle CBF handle.
reserved Unused. Any value other than 0 is invalid.
axis_id Axis id.
start Start value.
increment Increment value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 93

2.4.30 cbf_construct_goniometer

PROTOTYPE

#include "cbf_simple.h"

int cbf_construct_goniometer (cbf_handle handle, cbf_goniometer *goniometer);

DESCRIPTION

cbf_construct_goniometer constructs a goniometer object using the description in the CBF object handle
and initialises the goniometer handle *goniometer.

ARGUMENTS

handle CBF handle.
goniometer Pointer to the destination goniometer handle.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 94

2.4.31 cbf_free_goniometer

PROTOTYPE

#include "cbf_simple.h"

int cbf_free_goniometer (cbf_goniometer goniometer);

DESCRIPTION

cbf_free_goniometer destroys the goniometer object specified by goniometer and frees all associated
memory.

ARGUMENTS

goniometer Goniometer handle to free.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 95

2.4.32 cbf_get_rotation_axis

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_rotation_axis (cbf_goniometer goniometer, unsigned int reserved, double *vector1,
double *vector2, double vector3);

DESCRIPTION

cbf_get_rotation_axis sets *vector1, *vector2, and *vector3 to the 3 components of the goniometer
rotation axis used for the exposure.

Any of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

goniometer Goniometer handle.
reserved Unused. Any value other than 0 is invalid.
vector1 Pointer to the destination x component of the rotation axis.
vector2 Pointer to the destination y component of the rotation axis.
vector3 Pointer to the destination z component of the rotation axis.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 96

2.4.33 cbf_get_rotation_range

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_rotation_range (cbf_goniometer goniometer, unsigned int reserved, double *start,
double *increment);

DESCRIPTION

cbf_get_rotation_range sets *start and *increment to the corresponding values of the goniometer rotation
axis used for the exposure.

Either of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

goniometer Goniometer handle.
reserved Unused. Any value other than 0 is invalid.
start Pointer to the destination start value.
increment Pointer to the destination increment value.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 97

2.4.34 cbf_rotate_vector

PROTOTYPE

#include "cbf_simple.h"

int cbf_rotate_vector (cbf_goniometer goniometer, unsigned int reserved, double ratio, double initial1,
double initial2, double initial3, double *final1, double *final2, double *final3);

DESCRIPTION

cbf_rotate_vector sets *final1, *final2, and *final3 to the 3 components of the of the vector (initial1,
initial2, initial3) after reorientation by applying the goniometer rotations. The value ratio specifies the
goniometer setting and varies from 0.0 at the beginning of the exposure to 1.0 at the end, irrespective of the
actual rotation range.

Any of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

goniometer Goniometer handle.
reserved Unused. Any value other than 0 is invalid.
ratio Goniometer setting. 0 = beginning of exposure, 1 = end.
initial1 x component of the initial vector.
initial2 y component of the initial vector.
initial3 z component of the initial vector.
vector1 Pointer to the destination x component of the final vector.
vector2 Pointer to the destination y component of the final vector.
vector3 Pointer to the destination z component of the final vector.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 98

2.4.35 cbf_get_reciprocal

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_reciprocal (cbf_goniometer goniometer, unsigned int reserved, double ratio,
double wavelength, double real1, double real2, double real3, double *reciprocal1,
double *reciprocal2, double *reciprocal3);

DESCRIPTION

cbf_get_reciprocal sets *reciprocal1, * reciprocal2, and * reciprocal3 to the 3 components of the of the
reciprocal-space vector corresponding to the real-space vector (real1, real2, real3). The reciprocal-space
vector is oriented to correspond to the goniometer setting with all axes at 0. The value wavelength is the
wavlength in Å and the value ratio specifies the current goniometer setting and varies from 0.0 at the
beginning of the exposure to 1.0 at the end, irrespective of the actual rotation range.

Any of the destination pointers may be NULL.

The parameter reserved is presently unused and should be set to 0.

ARGUMENTS

goniometer Goniometer handle.
reserved Unused. Any value other than 0 is invalid.
ratio Goniometer setting. 0 = beginning of exposure, 1 = end.
wavelength Wavelength in Å.
real1 x component of the real-space vector.
real2 y component of the real-space vector.
real3 z component of the real-space vector.
reciprocal1 Pointer to the destination x component of the reciprocal-space vector.
reciprocal2 Pointer to the destination y component of the reciprocal-space vector.
reciprocal3 Pointer to the destination z component of the reciprocal-space vector.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 99

2.4.36 cbf_construct_detector

PROTOTYPE

#include "cbf_simple.h"

int cbf_construct_detector (cbf_handle handle, cbf_detector *detector, unsigned int element_number);

DESCRIPTION

cbf_construct_detector constructs a detector object for detector element number element_number using
the description in the CBF object handle and initialises the detector handle *detector.

ARGUMENTS

handle CBF handle.
detector Pointer to the destination detector handle.
element_number The number of the detector element counting from 0 by order of

appearance in the “diffrn_data_frame” category.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 100

2.4.37 cbf_free_detector

PROTOTYPE

#include "cbf_simple.h"

int cbf_free_detector (cbf_detector detector);

DESCRIPTION

cbf_free_detector destroys the detector object specified by detector and frees all associated memory.

ARGUMENTS

detector Detector handle to free.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 101

2.4.38 cbf_get_beam_center

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_beam_center (cbf_detector detector, double *index1, double *index2, double *center1,
double *center2);

DESCRIPTION

cbf_get_beam_center sets *center1 and *center2 to the displacements in mm along the detector axes from
pixel (0, 0) to the point at which the beam intersects the detector and *index1 and *index2 to the
corresponding indices.

Any of the destination pointers may be NULL.

ARGUMENTS

detector Detector handle.
index1 Pointer to the destination slow index.
index2 Pointer to the destination fast index.
center1 Pointer to the destination displacement along the slow axis.
center2 Pointer to the destination displacement along the fast axis.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 102

2.4.39 cbf_get_detector_distance

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_detector_distance (cbf_detector detector, double *distance);

DESCRIPTION

cbf_get_detector_distance sets *distance to the nearest distance from the sample position to the detector
plane.

ARGUMENTS

detector Detector handle.
distance Pointer to the destination distance.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 103

2.4.40 cbf_get_detector_normal

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_detector_normal (cbf_detector detector, double *normal1, double *normal2,
double *normal3);

DESCRIPTION

cbf_get_detector_normal sets *normal1, *normal2, and *normal3 to the 3 components of the of the
normal vector to the detector plane. The vector is normalized.

Any of the destination pointers may be NULL.

ARGUMENTS

detector Detector handle.
normal1 Pointer to the destination x component of the normal vector.
normal2 Pointer to the destination y component of the normal vector.
normal3 Pointer to the destination z component of the normal vector.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 104

2.4.41 cbf_get_pixel_coordinates

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_pixel_coordinates (cbf_detector detector, double index1, double index2, double *coordinate1,
double *coordinate2, double *coordinate3);

DESCRIPTION

cbf_get_pixel_coordinates sets *coordinate1, *coordinate2, and *coordinate3 to the vector position of
pixel (index1, index2) on the detector surface. If index1 and index2 are integers then the coordinates
correspond to the center of a pixel.

Any of the destination pointers may be NULL.

ARGUMENTS

detector Detector handle.
index1 Slow index.
index2 Fast index.
coordinate1 Pointer to the destination x component.
coordinate2 Pointer to the destination y component.
coordinate3 Pointer to the destination z component.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 105

2.4.42 cbf_get_pixel_normal

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_pixel_normal (cbf_detector detector, double index1, double index2, double *normal1,
double *normal2, double *normal3);

DESCRIPTION

cbf_get_detector_normal sets *normal1, *normal2, and *normal3 to the 3 components of the of the
normal vector to the pixel at (index1, index2). The vector is normalized.

Any of the destination pointers may be NULL.

ARGUMENTS

detector Detector handle.
index1 Slow index.
index2 Fast index.
normal1 Pointer to the destination x component of the normal vector.
normal2 Pointer to the destination y component of the normal vector.
normal3 Pointer to the destination z component of the normal vector.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 106

2.4.43 cbf_get_pixel_area

PROTOTYPE

#include "cbf_simple.h"

int cbf_get_pixel_area (cbf_detector detector, double index1, double index2, double *area,
double *projected_area);

DESCRIPTION

cbf_get_pixel_area sets *area to the area of the pixel at (index1, index2) on the detector surface and
*projected_area to the apparent area of the pixel as viewed from the sample position.

Either of the destination pointers may be NULL.

ARGUMENTS

detector Detector handle.
index1 Slow index.
index2 Fast index.
area Pointer to the destination area in mm2.
projected_area Pointer to the destination apparent area in mm2.

RETURN VALUE

Returns an error code on failure or 0 for success.

CBFlib 0.7.2.3 Page - 107

3. File format

3.1 General description

With the exception of the binary sections, a CBF file is an mmCIF-format ASCII file, so a CBF file with no
binary sections is a CIF file. An imgCIF file has any binary sections encoded as CIF-format ASCII strings
and is a CIF file whether or not it contains binary sections. In most cases, CBFlib can also be used to access
normal CIF files as well as CBF and imgCIF files.

3.2 Format of the binary sections

Before getting to the binary data itself, there are some preliminaries to allow a smooth transition from the
conventions of CIF to those of raw or encoded streams of "octets" (8-bit bytes). The binary data is given as
the essential part of a specially formatted semicolon-delimited CIF multi-line text string. This text string is
the value associated with the tag "_array_data.data".

The specific format of the binary sections differs between an imgCIF and a CBF file.

3.2.1 Format of imgCIF binary sections

Each binary section is encoded as a ;-delimited string. Within the text string, the conventions developed for
transmitting email messages including binary attachments are followed. There is secondary ASCII header
information, formatted as Multipurpose Internet Mail Extensions (MIME) headers (see RFCs 2045-49 by
Freed, et. al). The boundary marker for the beginning of all this is the special string

--CIF-BINARY-FORMAT-SECTION--

at the beginning of a line. The initial "--" says that this is a MIME boundary. We cannot put "###" in front
of it and conform to MIME conventions. Immediately after the boundary marker are MIME headers,
describing some useful information we will need to process the binary section. MIME headers can appear
in different orders, and can be very confusing (look at the raw contents of a email message with
attachments), but there is only one header which is has to be understood to process an imgCIF: "Content-
Transfer-Encoding". If the value given on this header is "BINARY", this is a CBF and the data will be
presented as raw binary, containing a count (in the header described in 3.2.2 Format of CBF binary
sections) so we'll know when to start looking for more information.

If the value given for "Content-Tranfer-Encoding" is one of the real encodings: "BASE64", "QUOTED-
PRINTABLE", "X-BASE8", "X-BASE10" or "X-BASE16", the file is an imgCIF, and we'll need some
other the other headers to process the encoded binary data properly. It is a good practice to give headers in
all cases. The meanings of various encodings is given in the CBF extensions dictionary, cif_img_1.1.3.dic.

The "Content-Type" header tells us what sort of data we have (currently
always "application/octet-stream" for a miscellaneous stream of binary data) and, optionally, the
conversions that were applied to the original data. In this case we have compressed the data with the "CBF-
PACKED" algorithm.

The "X-Binary-ID" header should contain the same value as was given for "_array_data.binary_id".

The "X-Binary-Size" header gives the expected size of the binary data. This is the size after any
compressions, but before any ascii encodings. This is useful in making a simple check for a missing
portion of this file. The 8 bytes for the Compression type (see below) are not counted in this field, so the

CBFlib 0.7.2.3 Page - 108

value of "X-Binary-Size" is 8 less than the quantity in bytes 12-19 of raw binary data (3.2.2 Format of
CBF binary
sections).

The optional "Content-MD5" header provides a much more sophisticated check on the integrity of the
binary data. Note that this check value is applied to the data after the 8 bytes for the Compression type.

A blank line separator immediately precedes the start of the encoded binary data. Blank spaces may be
added prior to the preceding "line separator" if desired (e.g. to force word or block alignment).

Because CBFLIB may jump forward in the file from the MIME header, the
length of encoded data cannot be greater than the value defined by "X-Binary-Size" (except when "X-
Binary-Size" is zero, which means that the size is unknown). At exactly the byte following the full binary
section as defined by the length value is the end of binary section identifier. This consists of the line-
termination sequence followed by:

--CIF-BINARY-FORMAT-SECTION----
;

with each of these lines followed by a line-termination sequence. This brings us back into a normal CIF
environment. This identifier is, in a sense, redundant because the binary data length value tells the a
program how many bytes to jump over to the end of the binary data. This redundancy has been deliberately
added for error checking, and for possible file recovery in the case of a corrupted file and this identifier
must be present at the end of every block of binary data.

3.2.2 Format of CBF binary sections

In a CBF file, each binary section is encoded as a ;-delimited string, starting with an arbitrary number of
pure-ASCII characters.

Note: For historical reasons, CIFlib has the option of writing simple header and footer sections: "START
OF BINARY SECTION" at the start of a binary section and "END OF BINARY SECTION" at the end of a
binary section, or writing MIME-type header and footer sections (3.2.1 Format of imgCIF binary sections).
If the simple header is used, the actual ASCII text is ignored when the binary section is read. Use of the
simple binary header is deprecated.

The MIME header is recommended.

Between the ASCII header and the actual CBF binary data is a series of bytes ("octets") to try to stop the
listing of the header, bytes which define the binary identifier which should match the "binary_id" defined
in the header, and bytes which define the length of the binary section.

Octet Hex Decimal Purpose
 1 0D 12 (ctrl-L) End of Page
 2 1A 26 (ctrl-Z) Stop listings in MS-DOS
 3 04 04 (Ctrl-D) Stop listings in UNIX
 4 D5 213 Binary section begins
 5..5+n-1 Binary data (n octets)

NOTE: When a MIME header is used, only bytes 5..5+n-1 are considered in
computing the size and the message digest, and only these bytes are encoded for the equivalent imgCIF file
using the indicated Content-Transfer-Encoding.

CBFlib 0.7.2.3 Page - 109

If no MIME header has been requested (a deprecated use), then bytes 5 through 28 are used for three 8-byte
words to hold the binary_id, the size and the compression type:

 5..12 Binary Section Identifier (See _array_data.binary_id) 64-bit, little endian
 13..20 The size (n) of the binary section in octets (i.e. the offset from octet 29 to

the first byte following the data)
 21..28 Compression type:

 CBF_NONE 0x0040 (64)
 CBF_CANONICAL 0x0050 (80)
 CBF_PACKED 0x0060 (96)
 CBF_BYTE_OFFSET 0x0070 (112)
 CBF_PREDICTOR 0x0080 (128)

 ...

The binary data then follows in bytes 29 through 29+n-1.

The binary characters serve specific purposes:

* The Control-L (from-feed) will terminate printing of the current page on
most operating systems.

* The Control-Z will stop the listing of the file on MS-DOS type operating
systems.

* The Control-D will stop the listing of the file on Unix type operating systems.

* The unsigned byte value 213 (decimal) is binary 11010101. (Octal 325,
and hexadecimal D5). This has the eighth bit set so can be used for error checking on 7-bit transmission. It
is also asymmetric, but with the first bit also set in the case that the bit order could be reversed (which is
not a known concern).

* (The carriage return, line-feed pair before the START_OF_BIN and other
lines can also be used to check that the file has not been corrupted e.g. by being sent by ftp in ASCII
mode.)

At present three compression schemes are implemented are defined: CBF_NONE (for no compression),
CBF_CANONICAL (for and entropy-coding scheme based on the canonical-code algorithm described by
Moffat, et al. (International Journal of High Speed Electronics and Systems, Vol 8, No 1 (1997) 179-231))
and CBF_PACKED for a CCP4-style packing scheme. Othercompression schemes will be added to this list
in the future.

For historical reasons, CBFlib can read or write a binary string without a MIME header. The structure of a
binary string with simple headers is:

Byte ASCII Symbol Decimal Value Description
 1 ; 59 Initial ; delimiter
 2 carriage-return 13 The CBF new-line code is carriage-return,

line-feed
 3 line-feed 10
 4 S 83
 5 T 84

CBFlib 0.7.2.3 Page - 110

 6 A 65
 7 R 83
 8 T 84
 9 32
 10 O 79
 11 F 70
 12 32
 13 B 66
 14 I 73
 15 N 78
 16 A 65
 17 R 83
 18 Y 89
 19 32
 20 S 83
 21 E 69
 22 C 67
 23 T 84
 24 I 73
 25 O 79
 26 N 78
 27 carriage-return 13
 28 line-feed 10
 29 form-feed 12
 30 substitute 26 Stop the listing of the file in MS-DOS
 31 end-of-

transmission
 4 Stop the listing of the file in unix

 32 213 First non-ASCII value
 33 .. 40 Binary section identifier (64-bit little-endien)
 41 .. 48 Offset from byte 57 to the first ASCII

character following the binary data
 49 .. 56 Compression type
57 .. 57+ n-1 Binary data (n

bytes)
 57 + n carriage-

return
 13

 58 + n line-feed 10
 59 + n E 69
 60 + n N 78
 61 + n D 68
 62 + n 32
 63 + n O 79
 64 + n F 70
 65 + n 32
 66 + n B 66
 67 + n I 73
 68 + n N 78
 69 + n A 65
 70 + n R 83
 71 + n Y 89
 72 + n 32
 73 + n S 83
 74 + n E 69
 75 + n C 67
 76 + n T 84
 77 + n I 73

CBFlib 0.7.2.3 Page - 111

 78 + n O 79
 79 + n N 78
 80 + n carriage-

return
 13

 81 + n line-feed 10
 82 + n ; 59 Final ; delimiter

3.3 Compression schemes

Two schemes for lossless compression of integer arrays (such as images) have been implemented in this
version of CBFlib:

1. An entropy-encoding scheme using canonical coding
2. A CCP4-style packing scheme.

Both encode the difference (or error) between the current element in the array and the prior element.
Parameters required for more sophisticated predictors have been included in the compression functions and
will be used in a future version of the library.

3.3.1 Canonical-code compression

The canonical-code compression scheme encodes errors in two ways: directly or indirectly. Errors are
coded directly using a symbol corresponding to the error value. Errors are coded indirectly using a symbol
for the number of bits in the (signed) error, followed by the error iteslf.

At the start of the compression, CBFlib constructs a table containing a set of symbols, one for each of the 2n

direct codes from -2(n-1) .. 2(n-1)-1, one for a stop code, and one for each of the maxbits-n indirect codes,
where n is chosen at compress time and maxbits is the maximum number of bits in an error. CBFlib then
assigns to each symbol a bit-code, using a shorter bit code for the more common symbols and a longer bit
code for the less common symbols. The bit-code lengths are calculated using a Huffman-type algorithm,
and the actual bit-codes are constructed using the canonical-code algorithm described by Moffat, et al.
(International Journal of High Speed Electronics and Systems, Vol 8, No 1 (1997) 179-231).

The structure of the compressed data is:

Byte Value
 1 .. 8 Number of elements (64-bit little-endian number)
 9 .. 16 Minimum element
 17 .. 24 Maximum element
 25 .. 32 (reserved for future use)
 33 Number of bits directly coded, n
 34 Maximum number of bits encoded, maxbits
 35 .. 35+2n-1 Number of bits in each direct code
 35+2n Number of bits in the stop code
 35+2n+1 ..
35+2n+maxbits-n

 Number of bits in each indirect code

 35+2n +
maxbits-n+1 ..

 Coded data

3.3.2 CCP4-style compression

The CCP4-style compression writes the errors in blocks . Each block begins with a 6-bit code. The number
of errors in the block is 2^n, where n is the value in bits 0 .. 2. Bits 3 .. 5 encode the number of bits in each
error:

CBFlib 0.7.2.3 Page - 112

Value in bits 3 .. 5 Number of bits
in each error

0 0
1 4
2 5
3 6
4 7
5 8
6 16
7 65

The structure of the compressed data is:
Byte Value
 1 .. 8 Number of elements (64-bit little-endian number)
 9 .. 16 Minumum element (currently unused)
 17 .. 24 Maximum element (currently unused)
 25 .. 32 (reserved for future use)
 33 .. Coded data

CBFlib 0.7.2.3 Page - 113

4. Installation

CBFlib should be built on a disk with at least 40 megabytes of free space. First create the top-level
directory (called, say, CBFlib_0.7.2). CBFlib_0.7.tar.gz is a “gzipped” tar of the code as it now stands.
Uncompress this file, place it in the top level directory, and unpack it with tar:

 tar xvf CBFLIB_0.7.2.tar

To run the test programs, you will also need to put the MAR345 image example.mar2300 in the top-level
directory. The image can also be found at

http://biosg1.slac.stanford.edu/biosg1-users/ellis/Public/

After unpacking the archive, the top-level directory should contain a makefile:

 Makefile Makefile for unix

and the subdirectories:

 src/ CBFLIB source files
 include/ CBFLIB header files
 examples/ Example program source files
 doc/ Documentation
 lib/ Compiled CBFLIB library
 bin/ Executable example programs
 html_images/ JPEG images used in rendering the HTML files

For instructions on compiling and testing the library, go to the top-level directory and type:

 make

The CBFLIB source and header files are in the "src" and "include" subdirectories. The files are:

src/ include/ Description
cbf.c cbf.h Low-level CBFLIB API functions
cbf_simple.c cbf_simple.h High-level CBFLIB API functions
cbf_alloc.c cbf_alloc.h Memory allocation functions
cbf_ascii.c cbf_ascii.h Function for writing ASCII values
cbf_binary.c cbf_binary.h Functions for binary values
cbf_byte_offset.c cbf_byte_offset.h Byte-offset compression (not implemented)
cbf_canonical.c cbf_canonical.h Canonical-code compression
cbf_codes.c cbf_codes.h Encoding and message digest functions
cbf_compress.c cbf_compress.h General compression routines
cbf_context.c cbf_context.h Control of temporary files
cbf_file.c cbf_file.h File in/out functions
cbf_lex.c cbf_lex.h Lexical analyser
cbf_packed.c cbf_packed.h CCP4-style packing compression
cbf_predictor.c cbf_predictor.h Predictor-Huffman compression (not

implemented)
cbf_read_binary.c cbf_read_binary.h Read binary headers
cbf_read_mime.c cbf_read_mime.h Read MIME-encoded binary sections
cbf_string.c cbf_string.h Case-insensitive string comparisons

CBFlib 0.7.2.3 Page - 114

cbf_stx.c cbf_stx.h Parser
cbf_tree.c cbf_tree.h CBF tree-structure functions
cbf_uncompressed.c cbf_uncompressed.h Uncompressed binary sections
cbf_write.c cbf_write.h Functions for writing
cbf_write_binary.c cbf_write_binary.h Write binary sections
cbf.stx bison grammar to define cbf_stx.c (see

WARNING)
md5c.c md5.h, global.h RSA message digest software from mpack

WARNING: Do not rebuild the parser, cbf_stx.c, from the bison grammar, cbf.stx, unless absolutely
necessary. There is a problem with the file bison.simple in the standard bison release. If you must rebuild
cbf_stx.c using bison, you will need cbf_PARSER.simple as a replacement for bison.simple. See the
cbf_PARSER.simple instructions.

In the "examples" subdirectory, there are 2 additional files used by the example program (section 5) for
reading MAR300, MAR345 or ADSC CCD images:

img.c img.h Simple image library

and the example programs themselves:

makecbf.c Make a CBF file from an image
img2cif.c Make an imgCIF or CBF from an image
cif2cbf.c Copy a CIF/CBF to a CIF/CBF
convert_image.c Convert an image file to a cbf using a template file

as well as two template files: template_adscquantum4_2304x2304.cbf and
template_mar345_2300x2300.cbf

The documentation files are in the "doc" subdirectory:

CBFlib.html This document (HTML)
CBFlib.txt This document (ASCII)
CBFlib_NOTICES.html Important NOTICES -- PLEASE READ
CBFlib_NOTICES.txt Important NOTICES -- PLEASE READ
CBFlib.ps CBFLIB manual (PostScript)
CBFlib.pdf CBFLIB manual (PDF)
CBFlib.rtf CBFLIB manual (RTF)
cbf_definition_rev.txt Draft CBF/ImgCIF definition (ASCII)
cbf_definition_rev.html Draft CBF/ImgCIF definition (HTML)
cif_img_1.1.3.html Draft CBF/ImgCIF extensions dictionary (HTML)
cif_img_1.1.3.dic Draft CBF/ImgCIF extensions dictionary (ASCII)
ChangeLog Summary of change history
MANIFEST List of files in this kit

CBFlib 0.7.2.3 Page - 115

5. Example programs

The example programs makecbf.c and img2cif.c read an image file from a MAR300, MAR345 or ADSC
CCD detector and then uses CBFlib to convert it to CBF format (makecbf) or either imgCIF or CBF format
(img2cif). makecbf writes the CBF-format image to disk, reads it in again, and then compares it to the
original. img2cif just writes the desired file. makecbf works only from stated files on disk, so that random
I/O can be used. img2cif includes code to process files from stdin and to stdout.

makecbf.c is a good example of how many of the CBFlib functions can be used. To compile makecbf on an
alpha workstation running Digital unix or a Silicon Graphics workstation running irix (and on most other
unix platforms as well), go to the src subdirectory of the main CBFlib directory and use the Makefile:

 make all

An example MAR345 image can be found at:

 http://smb.slac.stanford.edu /~ellis/

To run makecbf with the example image, type:

 ./bin/makecbf example.mar2300 test.cbf

The program img2cif has the following command line interface:

 img2cif [-i input_image] \
 [-o output_cif] \
 [-c {p[acked]|c[annonical]|[n[one]}] \
 [-m {h[eaders]|n[oheaders]}] \
 [-d {d[igest]|n[odigest]}] \
 [-e {b[ase64]|q[uoted-printable]| \
 d[ecimal]|h[exadecimal]|o[ctal]|n[one]}] \
 [-b {f[orward]|b[ackwards]}] \
 [input_image] [output_cif]

 the options are:

 -i input_image (default: stdin)
 the input_image file in MAR300, MAR345 or ADSC CCD detector
 format is given. If no input_image file is specified or is
 given as "-", an image is copied from stdin to a temporary file.

 -o output_cif (default: stdout)
 the output cif (if base64 or quoted-printable encoding is used)
 or cbf (if no encoding is used). if no output_cif is specified
 or is given as "-", the output is written to stdout

 -c compression_scheme (packed, canonical or none, default packed)

 -m [no]headers (default headers for cifs, noheaders for cbfs)
 selects MIME (N. Freed, N. Borenstein, RFC 2045, November 1996)

CBFlib 0.7.2.3 Page - 116

 headers within binary data value text fields.

 -d [no]digest (default md5 digest [R. Rivest, RFC 1321, April
 1992 using"RSA Data Security, Inc. MD5 Message-Digest
 Algorithm"] when MIME headers are selected)

 -e encoding (base64, quoted-printable, decimal, hexadecimal,
 octal or none, default: base64) specifies one of the standard
 MIME encodings (base64 or quoted-printable) or a non-standard
 decimal, hexamdecimal or octal encoding for an ascii cif
 or "none" for a binary cbf

 -b direction (forward or backwards, default: backwards)
 specifies the direction of mapping of bytes into words
 for decimal, hexadecimal or octal output, marked by '>' for
 forward or '<' for backwards as the second character of each
 line of output, and in '#' comment lines.

The test program cif2cbf uses the same command line options as img2cif, but accepts either a CIF or a CBF
as input instead of an image file.

The program convert_image take two arguments: imagefile and cbffile. Those are the primary
input and out. The detector type is extracted from the image file, converted to lower case and used to
construct the name of a template cbf file to use for the copy. The template file name is of the form
template_name_columnsxrows.

