
XDS in DNA. How?

Abstraction?
Data Access Layer (DAL)?
What design for inclusion in DNA?



Abstraction?

It would be nice to have more abstraction in 
the scheduler requests and responses

At the moment they are too Mosflm specific
Clean things (many unused elements)

Or should we have Data Processing specific 
requests and responses?

It could be a temporary solution
But it doesn’t meet the design goal of abstraction



Data Access Layer?

Will Store
User input data through the GUI

Type of experiment
Target space group and symmetry
Strategy chosen…

Experimental contextual Information coming from 
the BCM (ex: highest recordable resolution)
Main results from Data Procession by the 
scheduler (ex: estimation of the highest diffracted 
resolution by method X)



Data Access Layer?

Will provide a uniform information access 
Wright now there are at least 4 source of detector 
information (DNA internal from the BCM, 
DiffractionImage, Mosflm, Best). +XDS has its 
own
The detector object in dna_common.xsd is very 
limited

Only 2 attributes: “type” (“ADSC”, “MARCCD”…) and 
“suffix”
What about pixel size, number of pixels, gain, distance, 
orientation, binned mode, read-out time…



XDSauto

Pure python (uses only standard library 
module), less than 2500 lines

Automatic Laue group determination
Multithreaded integration possible on clusters
Automatic scaling and exports

Symmetry information stored in dictionaries
4 main classes XDS, XParam, Lattice, 
DataCollectInfo
LGPL licence



XDSauto IO

INPUTS can come from 3 sources

From the image headers as read by the 
DiffractionImage module
From xdsSetupDB: a xds specific 
Goniostat/Detector DB module
From some defaults parameters and/or arguments 
comming at runtime



XDSauto IO

OUTPUT: some wrappers are interpreting the 
XDS log file (*.LP) to produce

An xdsauto.log and xdsauto.html files
A limited implementation of the index_response

EXPORTS:
Reflections in various formats: MTZ, CNS, 
SHELX, SOLVE, EPMR, AMoRe, FALL
Options for merged/unmerged, anomal/normal
Standard input files for some programs are written
Can inherite from a free reflection set



XDSauto IO

EXPORTS (needs Numerical Python 
module):

Orientation matrices, (miss)setting angles can be 
imported, exported to Mosflm, Denzo conventions
xds2mos, xds2dnz, mos2dnz, mos2xds, dnz2mos

SETUP: Only 2 optional shell variables.
PYTHONPATH to the xupy python modules.
XDSHOME, points to the XDS execs (xds, xscale, 
xdsconv). If XDSHOME is not set, the default 
PATH variable is used.



Summary
What design goal for inclusion of XDS in 
DNA?
I don’t want to work on a temporary solution
Scheduler needs major improvement to have 
a “clean” inclusion of XDS
We need a more abstracted data model and 
scheduler framework (some thing like XIA)
(Include Numerical python as dependency for 
numerical calculations)


