
DNA Data Definitions

Dave Love, <d.love@dl.ac.uk>

Draft, 2002-01-31

Contents

1 Preamble 2
1.1 Scope . 2
1.2 Presentation . 2
1.3 Naming . 3

2 Data types and units 3
2.1 Basic types . 3
2.2 Units . 4
2.3 Extensibility—keywords . 5

3 ‘Beamline’ parameters 5
3.1 Detector . 6

3.1.1 Detector intrinsics . 6
3.2 Detector geometry . 7
3.3 Source . 8
3.4 Goniometer . 9
3.5 Queries . 11
3.6 Detector element . 11
3.7 Beamline group . 11

4 Data collection RPC 11
4.1 Data collection parameters . 12
4.2 Image filename template . 14
4.3 Whole RPC . 15
4.4 Results . 16

5 Data Collection Query 16

6 Assembled DTD 17

7 XML test/example &c 18

8 Indexes 19
8.1 Code Chunks . 19
8.2 Identifier definitions and usage 19

1

1 Preamble

The DNA project has chosen to pass data between stages in home-brewed XML
which has to describe the arguments and results of RPCs.1

This is a specification of data passed between stages of automated data collection
and processing, complete and detailed enough to write the necessary interfaces.
It’s more-or-less influenced by scraps of examples taken from minutes of meet-
ings, which don’t always provide enough information for an implementation,
but altered where it seems appropriate and somewhat extended. I’ve proceeded
mostly bottom-up, starting with the data collection parts.

Currently, there are many unresolved issues—see the ‘[Fixme: . . .]’s throughout.
This still needs work before it’s really ready for comment.

1.1 Scope

It’s meant to be general enough to cover arbitrary PX beamlines and data
processing programs—not just Mosflm. The programs (or suites) known to
be of interest are: Mosflm, d*TREK, XDS, Denzo, HKL2000, DPS, Strategy,
Rotgen, Scala (presumably), Truncate (which appears at the end of DPS’s chain;
presumably we go that far). I’m less sure about variations of beamlines than
programs.

Of these, I’ve looked to some extent at the input required by Mosflm, d*TREK,
DPS and XDS. I’ve been guided mainly by the definitions for John Campbell’s
RDM stuff,2, modified as appropriate, except that I assume the image headers
should be the default source of information, overridden by other data only if
necessary. [Fixme: I wonder if what d*TREK uses—is this Madnes-derived?—is
a better basis, since it looks more general. I don’t have time to study it enough.]

There’s no specification here of control flow, specifically abort processing or
fundamental failure of an RPC. This needs to be done out-of-band—i.e. not by
passing XML documents—since the system may not be in a state to be able
to process them. E.g., if we were using a proper HTTP system, an operation
would be aborted simply by the client chopping the request; also there would
be timeouts and extra support for error conditions from the protocol.

1.2 Presentation

This document is a literate program. ‘Code’ (DTD fragments) is embedded in a
convenient way in the narrative about it, and the code and documentation are
processed with tools, in this case noweb (<URL:http://www.cs.virginia.edu/
~nr/noweb/intro.html>). The code chunks appear as sections of the form:

〈chunk name 1a〉≡
code ...

1This is couched in terms of remote procedure calls, even if they’re actually local, since
they’re inter-process and have been defined to be networked.

2<URL:http://www.dl.ac.uk/SRS/PX/jwc_progs/rdm_chap1.html> RDM appears mainly
to follow mosflm conventions.

2

http://www.cs.virginia.edu/~nr/noweb/intro.html
http://www.cs.virginia.edu/~nr/noweb/intro.html
http://www.dl.ac.uk/SRS/PX/jwc_progs/rdm_chap1.html

These can be in arbitrary order appropriate to the exposition and are assembled
into the appropriate output by the tool. They can be built up incrementally,
typically by to the description of that part, with raw code and by using other
chunks which are expanded in-place recursively. Chunks have various sorts of
cross-referencing, though that’s of limited use in this case.

1.3 Naming

When choosing XML element names, I’ve used ‘_’ as a word separator rather
than ‘-’, which I prefer,3 since that’s what’s been done before. I’ve tried to
use verb phrases for RPC element names to make it clear what’s the RPC and
what’s the result.

2 Data types and units

To specify the data properly, we need type information (typically with dimen-
sion/unit information for physical quantities). While a description of XML
structure in terms of a DTD can’t make use of this,4 it acts as documentation
and might be usable if the DTD is transformed to something else which can
express the constraints it implies.

2.1 Basic types

The types of the data described below are abbreviated for convenience as follows:

R Single-precision real number in a format acceptable to scanf(3). (This
should also cover Fortran fixed and free format, which is typically more
general.)

Z Integer (positive, negative or zero) in decimal.

N Natural number (an integer ≥ 0) in decimal.

N1 Natural number > 0 in decimal.

UTF-8 UTF-8-encoded Unicode text5 (ASCII-compatible).

All non-ASCII text is UTF-8. In non-ASCII, non-UTF-8 locales, non-ASCII
text must be converted to UTF-8 for exchange. Rationale: this avoids pass-
ing charset information around, and we can’t assume are operating in the
same locale6. I take it for granted that non-ASCII filenames and such should
be allowed, especially en Fran cais.

Enumeration Taken from a set of symbolic values, e.g. detector types. Treated
individually and written as ‘〈alternative〉 | 〈alternative〉 . . . ’ in the text.

3It’s easier to type and is compatible with the SGML reference concrete syntax.
4Except that it can express enumerated values iff they’re treated as attributes. The non-

uniformity involved isn’t worth it.
5<URL:http://www.unicode.org>
6Concerning locale processing, see locale(7) or general references on software localization.

3

http://www.unicode.org

The corresponding entities for the DTD are as follows. Note that XML doesn’t
allow CDATA content, i.e. entity references are expanded, so & and < need to be
escaped if they occur in the data.

4a 〈type entities 4a〉≡ (17e)

<!ENTITY % CDATA "(#PCDATA)"> <!-- Can’t use CDATA content in XML -->
<!ENTITY % real "%CDATA;">
<!ENTITY % integer "%CDATA;">
<!ENTITY % nat "%CDATA;">
<!ENTITY % nat_one "%CDATA;">
<!ENTITY % utf-8 "(#PCDATA)">
<!ENTITY % enum "%CDATA;"> <!-- arbitrary enumeration -->

Defines:
CDATA, never used.
enum, used in chunks 6b, 10, and 16a.
integer, never used.
nat, used in chunk 12.
nat one, used in chunks 6d and 12e.
real, used in chunks 4b and 7–9.
utf-8, used in chunks 5a, 12c, 14, and 16b.

The compound types we’re interested in are tuples—pairs, triplets &c of data—
modelled as nested elements. A coordinate, simply expressed as two real num-
bers might thus have type (R,R).7 The type descriptions are often qualified
with a numerical condition, e.g. an open range [a..b]. Repetition of a type once
or more is indicated by ‘+’.

2.2 Units

In practice, we need to give most of the data a type which includes physical units,
perhaps measured according to a certain convention. Thus we have element
contents which may be ‘typed’ as follows, all basically R:

mm A distance in mm (> 0).

Å A wavelength in Å (> 0).

◦ An angle in degrees. This must have a specified convention.

s A time in seconds (> 0).

The corresponding entities for the DTD are as follows (restricting ourselves to
ASCII names, though XML doesn’t impose that restriction).

4b 〈unit entities 4b〉≡ (17e)

<!ENTITY % mm "%real;">
<!ENTITY % Angstroems "%real;">
<!ENTITY % degrees "%real;">
<!ENTITY % s "%real;">

Defines:
Angstroems, used in chunk 8c.
degrees, used in chunks 8f, 10, 12f, and 13.
mm, used in chunks 6, 7, and 9a.
s, used in chunks 12d and 18c.

Uses real 4a.

7In formal descriptions, compound types may be written as Cartesian products of the sets
involved: R× R.

4

2.3 Extensibility—keywords

To allow for some (private) extensibility within this framework, we have the
possibility of providing extra information through arbitrary keyworded data in
various places. This is just a list of textual key/value pairs. Type: (utf-8,utf-8)+.

5a 〈keywords 5a〉≡ (17e)

<!ELEMENT keywords (key, value)+>
<!ELEMENT key %utf-8;>
<!ELEMENT value %utf-8;>

Defines:
key, never used.
keywords, used in chunks 11b and 15a.
value, never used.

Uses utf-8 4a.

3 ‘Beamline’ parameters

This describes data returned in response to a trivial RPC requesting them:
5b 〈RPCs 5b〉≡ (17e) 15a .

<!ELEMENT get_beamline_parameters EMPTY>
Defines:

get beamline parameters, used in chunk 5.

Detector and source info are included in the returned data.

Much of this can be optional, since it can ‘normally’ be read from the im-
age headers. We need to be able to specify it separately, anyhow. Some is
compulsory because we need to know parameters to take initial data, e.g. the
wavelength, distance and detector radius determine the maximum resolution,
which will be a data-taking parameter.8

There’s a lot more here than is always necessary, e.g. just to find the current φ,
but it shouldn’t be expensive to generate the info and ignore most of it returned
from the call.

The following chunk is used in the test document (§7). Alternations for all the
top-level elements9 are added as they’re defined.

5c 〈top-level elements 5c〉≡ (18a) 11c .

get_beamline_parameters
Uses get beamline parameters 5b.

We’ll have top-level examples as we go.
5d 〈example 5d〉≡ (18a) 11d .

<get_beamline_parameters/> <!-- RPC -->
Uses get beamline parameters 5b.

8One could argue that it’s OK to take a dummy image to extract this stuff from the header.
9These are the ones corresponding to individual transactions, which will appear in the

DOCTYPE declaration of a document.

5

3.1 Detector

We’ll have a compulsory group for detector information.
6a 〈beamline 6a〉≡ (17e) 8b .

〈detector 6b〉

3.1.1 Detector intrinsics

This covers things more-or-less intrinsic to the detector.

Detector type We need to know the detector type since mosflm, at least, can’t
deduce the information purely from the image header, even for SMV v. MAR,
for instance. It’s not clear to me whether this is best done in terms of actual
detector models or more generically by image format, if that’s more-or-less
self-describing (or both). For now, let’s enumerate detector types which,
presumably, define the image formats too. These are the ones I know about:

Q4 ADSC Quantum-4.

MAR-CCD

MAR-345

[Fixme: There should be a type generic in the case where we need to deal
with images without a self-describing header we can grok. Perhaps it’s better
merely to imply that if the detector type is missing.]

6b 〈detector 6b〉≡ (6a) 6c .

<!ELEMENT detector_type %enum;>
Defines:

detector type, used in chunk 11.
Uses enum 4a.

Radius We need this to set the distance for a given resolution. In principle,
perhaps, it’s derived from the detector type, but that may be a generic image
type rather than a specific detector, and we don’t want to have to take data
to find it out, even if it is in the headers. Type: mm (> 0).

6c 〈detector 6b〉+≡ (6a) / 6b 6d .

<!ELEMENT radius %mm;>
Defines:

radius, used in chunks 8a and 11.
Uses mm 4b.

Overload Any pixel value greater than or equal to this value is to be treated
as overloaded. Don’t treat overloads if this is omitted. Type: N1. Optional.

6d 〈detector 6b〉+≡ (6a) / 6c 7a .

<!ELEMENT overload %nat_one;>
Defines:

overload, used in chunk 11a.
Uses nat one 4a.

6

Gain The conversion efficiency (pixel counts per photon). Type: R (> 0).
Default: 1. Optional, but important for statistical purposes.10

7a 〈detector 6b〉+≡ (6a) / 6d 7b .

<!ELEMENT gain %real;>
Defines:

gain, used in chunk 11a.
Uses real 4a.

Correction info We need to know whether or not images are distortion-corrected
and, if not, the calibration file names.11 [Fixme: Sort this out in case it’s
needed.]

In d*TREK (following Stanton, I think), the distortion types are: ‘simple’
and ‘interpolation tables’ (with a base file name). The mask/non-uniformity
specification is ‘none’, ‘simple mask’, or ‘dark image and non-uniformity’.

For spiral-scanned image plates we need the radial and tangential offsets,
‘Roff’ and ‘Toff’, both of type: mm, optional.

7b 〈detector 6b〉+≡ (6a) / 7a 7c .

<!-- Fixme: correction-info -->
<!ELEMENT roff %mm;>
<!ELEMENT toff %mm;>

Defines:
roff, used in chunk 11a.
toff, used in chunk 11a.

Uses mm 4b.

Dark image A file name for the current dark image for corrections. Type:
UTF-8. Optional. [Fixme: Does this ever need to be specified separately
from the general correction info?]

3.2 Detector geometry

This group describes the geometry of the detector (as opposed to the goniome-
ter) and things related to the image on it.

Distance The source/detector distance. Type: mm (> 0). Compulsory for the
same reason as detector size.

7c 〈detector 6b〉+≡ (6a) / 7b 7d .

<!ELEMENT distance %mm;>
Defines:

distance, used in chunk 11.
Uses mm 4b.

Beam centre The centre of the diffraction pattern (x, y) in detector coordi-
nates.12 Type: (mm,mm). [Fixme: In mosflm convention?]

7d 〈detector 6b〉+≡ (6a) / 7c 8a .

<!ELEMENT x %mm;>
<!ELEMENT y %mm;>
<!ELEMENT beam_centre (x, y)>

Defines:
beam centre, used in chunk 11.
x, used in chunks 8a and 11d.
y, used in chunks 8a and 11d.

Uses mm 4b.

10Note that this probably shouldn’t be independent of distortion corrections, which have a
smoothing effect.

11Note that mosflm can’t use uncorrected data.
12Known to be crucial for the analysis.

7

Beam stop shadow This defines a circular area to omit from processing in
terms of a centre and radius in detector coordinates. The convention for x
and y is the same as for the beam centre. Type: (mm,mm,mm). Optional.

8a 〈detector 6b〉+≡ (6a) / 7d 11a .

<!ELEMENT beam_stop (x, y, radius)>
Defines:

beam stop, used in chunk 11a.
Uses radius 6c, x 7d, and y 7d.

3.3 Source

This group describes the source. [Fixme: I think some of the parameters here
are appropriate for synchrotrons only, but do we need anything special for lab
sources?]

8b 〈beamline 6a〉+≡ (17e) / 6a 9d .

〈source 8c〉

Wavelength Type: Å.
8c 〈source 8c〉≡ (8b) 8d .

<!ELEMENT wavelength %Angstroems;>
Defines:

wavelength, used in chunks 9c and 11d.
Uses Angstroems 4b.

Polarization The beam polarization factor. Type: R([0.0..1.0]). [Fixme:
d*TREK also has a ‘vector normal to the plane of polarization’.]

8d 〈source 8c〉+≡ (8b) / 8c 8e .

<!ELEMENT polarization %real;>
Defines:

polarization, used in chunk 9c.
Uses real 4a.

Dispersion δλ/λ. Assumed zero if omitted. Type: R. Optional. [Fixme: Is
this signed?]

8e 〈source 8c〉+≡ (8b) / 8d 8f .

<!ELEMENT dispersion %real;>
Defines:

dispersion, used in chunk 9c.
Uses real 4a.

Divergence A pair of horizontal and vertical dispersions. Type: (◦,◦) > 0. As-
sumed zero if omitted. Optional. [Fixme: d*TREK has ‘source rotation’s.]

8f 〈source 8c〉+≡ (8b) / 8e 9a .

<!ELEMENT divergence (div_x, div_y)>
<!ELEMENT div_x %degrees;>
<!ELEMENT div_y %degrees;>

Defines:
divergence, used in chunk 9c.
div x, never used.
div y, never used.

Uses degrees 4b.

8

Correlated dispersion [Fixme: ?? ‘a correlated component of the wavelength
dispersion’ according to RDM]. Type: R. Optional.

Slits The collimator size, determining the beam spot size via its distance and
beam divergence. A single number, assuming a round or square collimator.13

Type: mm (> 0). Optional.

[Fixme: Check this. It came from ESRF (Sean?). Doesn’t it make more
sense to specify an actual spot size? If not, don’t we need another number
for the collimator distance?]

9a 〈source 8c〉+≡ (8b) / 8f 9b .

<!ELEMENT slits %mm;>
Defines:

slits, used in chunk 9c.
Uses mm 4b.

Beam FOM This is a number providing some sort of figure of merit for the
beam, presumably at least a measure of its intensity. Type: R. Optional.
[Fixme: Does this need more than a single number?]

9b 〈source 8c〉+≡ (8b) / 9a 9c .

<!ELEMENT beam_fom %real;>
Defines:

beam fom, used in chunk 9c.
Uses real 4a.

9c 〈source 8c〉+≡ (8b) / 9b

<!ELEMENT source (wavelength, polarization?, dispersion?,
divergence?, slits?, beam_fom?)>

Uses beam fom 9b, dispersion 8e, divergence 8f, polarization 8d, slits 9a,
and wavelength 8c.

3.4 Goniometer

This group describes the rotation setup. [Fixme: Is ‘goniometer’ the right term?]

[Fixme: This description from RDM may need modification.] In contrast:

• DPS uses: ‘spindle axis’ (clockwise/anticlockwise), ‘parallel with’ (horizon-
tal/vertical); ‘detector rotations’ x (beam), y, z (spindle).

• d*TREK uses: ‘detector swing’; rotations: ‘rotz’, ‘rotx/swing’, ‘roty’; trans-
lations: ‘transx’, ‘transy’, ‘transz/distance’.

• XDS uses: DIRECTION OF DETECTOR X-AXIS, DIRECTION OF DETECTOR Y-
AXIS, INCIDENT BEAM DIRECTION.

9d 〈beamline 6a〉+≡ (17e) / 8b 11b .

〈goniometer 10a〉

13Says Miri.

9

Type Either simple or three-circle. Type: enumerated simple | 3-circle. De-
fault: simple (implying rotation axis φ). Optional. [Fixme: Is there a need
for 3-circle, or anything more general?]

10a 〈goniometer 10a〉≡ (9d) 10b .

<!ELEMENT goniometer_type %enum;>
Defines:

goniometer type, used in chunk 10g.
Uses enum 4a.

Orientation The direction (perpendicular to the beam) of the axis around
which the crystal is to be rotated during data collection. It is defined looking
along the beam direction as ‘right’, ‘left’, ‘up’ or ‘down’. Type: enumerated
right | left | up | down. Default: right. Optional.

10b 〈goniometer 10a〉+≡ (9d) / 10a 10c .

<!ELEMENT goniometer_orientation %enum;>
Defines:

goniometer orientation, used in chunk 10g.
Uses enum 4a.

Rotation axis Axis around which three-circle goniometer rotates. Type: enu-
merated φ |ω. Default: ω. Optional.

10c 〈goniometer 10a〉+≡ (9d) / 10b 10d .

<!ELEMENT rotation_axis %enum;>
Defines:

rotation axis, used in chunk 10g.
Uses enum 4a.

φ Current φ rotation angle. Compulsory, in case we need to know it without
taking data. Type: ◦ ([−720.0..720.0]).

10d 〈goniometer 10a〉+≡ (9d) / 10c 10e .

<!ELEMENT phi %degrees;>
Defines:

phi, used in chunks 10g, 11d, and 16e.
Uses degrees 4b.

κ Current κ setting. Ignored for type ‘simple’. Type: ◦ ([−720.0..720.0]).
Default: 0. Optional.

10e 〈goniometer 10a〉+≡ (9d) / 10d 10f .

<!ELEMENT kappa %degrees;>
Defines:

kappa, used in chunk 10g.
Uses degrees 4b.

ω Current ω setting. Ignored for type ‘simple’. Type: ◦ ([−720.0..720.0]).
Default: 0. Optional.

10f 〈goniometer 10a〉+≡ (9d) / 10e 10g .

<!ELEMENT omega %degrees;>
Defines:

omega, used in chunk 10g.
Uses degrees 4b.

10g 〈goniometer 10a〉+≡ (9d) / 10f

<!ELEMENT goniometer (goniometer_type?, goniometer_orientation?,
rotation_axis?, phi, kappa?, omega?)>

Defines:
goniometer, used in chunk 11.

Uses goniometer orientation 10b, goniometer type 10a, kappa 10e, omega 10f, phi 10d,
and rotation axis 10c.

10

3.5 Queries

[Fixme: What exactly is 2θ, and does it need to be specified?]

3.6 Detector element

The entire detector group is:
11a 〈detector 6b〉+≡ (6a) / 8a

<!ELEMENT detector (detector_type, radius, distance, beam_centre,
overload?, gain?, roff?, toff?, beam_stop?)>

Defines:
detector, used in chunk 11.

Uses beam centre 7d, beam stop 8a, detector type 6b, distance 7c, gain 7a, overload 6d,
radius 6c, roff 7b, and toff 7b.

3.7 Beamline group

11b 〈beamline 6a〉+≡ (17e) / 9d

<!ELEMENT beamline (source, detector, goniometer, keywords?)>
Defines:

beamline, used in chunk 11.
Uses detector 11a, goniometer 10g, and keywords 5a.

11c 〈top-level elements 5c〉+≡ (18a) / 5c 15b .

|beamline
Uses beamline 11b.

11d 〈example 5d〉+≡ (18a) / 5d 15c .

<beamline> <!-- result -->
<source><wavelength>0.97</wavelength></source>
<detector>
<detector_type>Q4</detector_type>
<radius>95.0</radius>
<distance>120</distance>
<beam_centre><x>91.2</x><y>93.4</y></beam_centre>

</detector>
<goniometer><phi>0.</phi></goniometer>

</beamline>
Uses beam centre 7d, beamline 11b, detector 11a, detector type 6b, distance 7c,

goniometer 10g, phi 10d, radius 6c, wavelength 8c, x 7d, and y 7d.

4 Data collection RPC

This describes an RPC on the data acquisition system to collect a range of
images. [Fixme: There seem to be different possible data collection modes, e.g.
dose mode. Do we need to cover those?]

[Fixme: This doesn’t consider setting beamline parameters. Should that be
considered as part of the data collection—which seems appropriate—or done
separately? The possibilities for setting things are at least: wavelength, dis-
tance, slits.]

11

4.1 Data collection parameters

Scan id [Fixme: Can it be 0?]
12a 〈data acq 12a〉≡ (17e) 12b .

<!ELEMENT id %nat;> <!-- fixme -->
Defines:

id, used in chunks 15 and 16.
Uses nat 4a.

Start number This is the number at which to start labelling images in the
scan. Type: N. [Fixme: Should this be N1?] Optional, default 1.

12b 〈data acq 12a〉+≡ (17e) / 12a 12c .

<!ELEMENT start_number %nat;> <!-- fixme -->
Defines:

start number, used in chunk 15a.
Uses nat 4a.

Project id [Fixme: I’m not sure what this is]
12c 〈data acq 12a〉+≡ (17e) / 12b 12d .

<!ELEMENT project_id %utf-8;> <!-- fixme -->
Uses utf-8 4a.

Exposure time The collection time per image. Type: s (> 0). [Fixme: Op-
tional in dose mode?]

12d 〈data acq 12a〉+≡ (17e) / 12c 12e .

<!ELEMENT exposure_time %s;>
Defines:

exposure time, used in chunks 15 and 17.
Uses s 4b.

Number of passes This is a number of passes to make through the oscillation
angle to account for beam fluctuations etc. Type: N1.

12e 〈data acq 12a〉+≡ (17e) / 12d 12f .

<!ELEMENT passes %nat_one;>
Defines:

passes, used in chunks 15 and 17.
Uses nat one 4a.

Oscillation angle The oscillation angle (δφ) for each image in a scan. Type:
◦ (> 0).

12f 〈data acq 12a〉+≡ (17e) / 12e 13 .

<!ELEMENT oscillation_angle %degrees;>
Defines:

oscillation angle, used in chunks 15 and 17.
Uses degrees 4b.

12

Start and end φ The start and end angles for a scan. In principle,

φend = φstart ± n(δφ) ,

where n is the number of images in the scan, and the ‘±’ accounts for taking
the modulus of the oscillation angle. In practice, we have to be careful,
because rounding errors could lead to an off-by-one error in the number of
points if n is computed from the range and increment näıvely. I assume
that the range should be taken as a real limit (since there may be physical
constraints). In that case n should be computed as

b(|φend − φstart| + ∆)/δφc ,

where ∆ is a fudge factor depending on the floating point precision.

Type: ◦. [Fixme: Clarify how the angles are related to the goniometer
parameters.]

[Fixme: Is there never an overlap in φ between frames?]
13 〈data acq 12a〉+≡ (17e) / 12f 14 .

<!ELEMENT phi_start %degrees;>
<!ELEMENT phi_end %degrees;>

Defines:
phi end, used in chunk 15.
phi start, used in chunk 15.

Uses degrees 4b.

Sequence increment [Fixme: Do we also want the sequence increment that
d*TREK allows?]

13

4.2 Image filename template

This has previously been put in a group broken into a directory and a filename
template part. Specifying the directory is redundant—the system can keep track
of a separate directory if necessary.

The template is in the form of a fully-qualified UTF-8 POSIX pathname14 (not
intended to name an existing file). If it becomes necessary to generalize the
description of image locations, say to URLs, a pseudo root directory could be
defined to cover that, e.g. /URL:http://....

It is of the form

〈directory〉〈file base〉〈replacement〉〈file tail〉

where:

〈directory〉 is a directory name (including the trailing slash) or null;

〈file base〉 is the start of a file name template common through a run. It may
not contain # characters.

It may contain a run of ? characters to be replaced by the scan id (4.3).
Rationale: the template is constant in a data collection specification covering
several scans;

〈replacement〉 is a run of # characters to be replaced by a formatted integer
run number with leading zeroes to pad the field to the number of characters
represented by the #s, and

〈file tail〉 is the end of the file name common to a run (normally the extension,
including the dot). It may not contain # or ? characters.

When 〈replacement〉 and any ? field in 〈file base〉 are filled in, the result is a path
name to which to write the current image in the scan sequence. It’s unspecified
whether or not existing files may be overwritten, since this is presumably a
function of a specific data acquisition setup.

14 〈data acq 12a〉+≡ (17e) / 13

<!ELEMENT template %utf-8;>
Defines:

template, used in chunks 15 and 17.
Uses utf-8 4a.

14I.e. the directory separators are ‘/’, even on DozeN’T et al, should that ever be appropriate.

14

4.3 Whole RPC

The data collection has been defined to be split into multiple scans.15 [Fixme:
I don’t remember the rationale for this.]

We’ll add optional keywords to the elements defined above in case there’s any
other information that needs passing.

15a 〈RPCs 5b〉+≡ (17e) / 5b 16f .

<!ELEMENT scan (id, exposure_time, oscillation_angle, phi_start,
phi_end, passes, template, start_number?, keywords?)>

<!ELEMENT collect (scan)+>
Defines:

collect, used in chunk 15.
scan, used in chunk 15c.

Uses exposure time 12d, id 12a, keywords 5a, oscillation angle 12f, passes 12e,
phi end 13, phi start 13, start number 12b, and template 14.

15b 〈top-level elements 5c〉+≡ (18a) / 11c 16d .

|collect
Uses collect 15a.

15c 〈example 5d〉+≡ (18a) / 11d 16e .

<collect> <!-- RPC (2 images for autoindexing) -->
<scan>
<id>1</id>
<exposure_time>2.0</exposure_time>
<oscillation_angle>1.0</oscillation_angle>
<phi_start>0</phi_start>
<phi_end>1</phi_end>
<passes>1</passes>
<template>index0_#.img</template>

</scan>
<scan>
<id>2</id>
<exposure_time>2.0</exposure_time>
<oscillation_angle>1.0</oscillation_angle>
<phi_start>90</phi_start>
<phi_end>91</phi_end>
<passes>1</passes>
<template>index0_#.img</template>

</scan>
</collect>

Uses collect 15a, exposure time 12d, id 12a, oscillation angle 12f, passes 12e,
phi end 13, phi start 13, scan 15a, and template 14.

15Previously referred to as a ‘data set’. I’ve used the d*TREK terminology, which is clearer
and consistent with SR data-taking generally.

15

4.4 Results

A result seems to be expected for each scan in a collection, comprising the scan
id, a status and an error message. [Fixme: I’d have thought feedback would be
required after every image in a scan, though this is obtainable out-of-band (at
least with the ADSC system).]

Status I guess this should be of type: enum OK | error. [Fixme: Is there any
reason to require this? The presence or absence of an error message can
convey the information.]

16a 〈results 16a〉≡ (17e) 16b .

<!ELEMENT status %enum;>
Defines:

status, used in chunk 16.
Uses enum 4a.

Message The error message is text for human-readable display. Type: utf-8.
Optional, since it’s irrelevant if status=OK.

16b 〈results 16a〉+≡ (17e) / 16a 16c .

<!ELEMENT error_message %utf-8;>
Defines:

error message, used in chunk 16.
Uses utf-8 4a.

16c 〈results 16a〉+≡ (17e) / 16b 17b .

<!ELEMENT collect_result (id, status, error_message?)>
Defines:

collect result, used in chunk 16.
Uses error message 16b, id 12a, and status 16a.

16d 〈top-level elements 5c〉+≡ (18a) / 15b 16g .

|collect_result
Uses collect result 16c.

16e 〈example 5d〉+≡ (18a) / 15c 17a .

<collect_result> <!-- result -->
<id>1</id><status>error</status>
<error_message>phi out of range</error_message>
</collect_result>

Uses collect result 16c, error message 16b, id 12a, phi 10d, and status 16a.

5 Data Collection Query

There seems to be a short-term need to extract information from existing data
acquisition interfaces comprising: exposure time, oscillation angle, number of
passes, project id and image name template. These are defined as above.

16f 〈RPCs 5b〉+≡ (17e) / 15a

<!ELEMENT get_dc_parameters EMPTY>
Defines:

get dc parameters, used in chunks 16g and 17a.

16g 〈top-level elements 5c〉+≡ (18a) / 16d 17c .

|get_dc_parameters
Uses get dc parameters 16f.

16

17a 〈example 5d〉+≡ (18a) / 16e 17d .

<get_dc_parameters/> <!-- RPC -->
Uses get dc parameters 16f.

The result is as follows. [Fixme: Should any/all of these be optional in this
context?]

17b 〈results 16a〉+≡ (17e) / 16c

<!ELEMENT dc_parameters (exposure_time, oscillation_angle, passes,
project_id, template)>

Defines:
dc parameters, used in chunk 17.

Uses exposure time 12d, oscillation angle 12f, passes 12e, and template 14.

17c 〈top-level elements 5c〉+≡ (18a) / 16g

|dc_parameters
Uses dc parameters 17b.

17d 〈example 5d〉+≡ (18a) / 17a

<dc_parameters> <!-- result -->
<exposure_time>2</exposure_time>
<oscillation_angle>1.0</oscillation_angle>
<passes>1</passes>
<project_id>?</project_id> <!-- fixme -->
<template>/data1/dl/foo_?_###.img</template>

</dc_parameters>
Uses dc parameters 17b, exposure time 12d, oscillation angle 12f, passes 12e,

and template 14.

6 Assembled DTD

17e 〈data-def.dtd 17e〉≡
<?xml version="1.0"?>
〈type entities 4a〉
〈unit entities 4b〉
〈keywords 5a〉
〈beamline 6a〉
〈data acq 12a〉
<!-- RPCs -->
〈RPCs 5b〉
<!-- RPC results -->
〈results 16a〉

17

7 XML test/example &c

Here’s an example/test document to check the DTD and examples. We’ll fiddle
the DTD to allow including various top-level elements in it.

18a 〈example.xml 18a〉≡
<?xml version="1.0"?>
<!DOCTYPE test SYSTEM "data-def.dtd"
[<!ELEMENT test (〈top-level elements 5c〉)+>]>

<test>
〈example 5d〉
</test>

It’s checked with the following script, using the parser from the OpenSP tools
(<URL:http://openjade.sourceforge.net/>). The SGML_CATALOG_FILES value
is system-dependent, obviously. Pass it option -s to suppress parsed output.

18b 〈xml-nsgmls 18b〉≡
#! /bin/sh
SP_CHARSET_FIXED=YES SP_ENCODING=XML \
SGML_CATALOG_FILES=/usr/share/sgml/declaration/xml.soc \
onsgmls -wxml "$@"

The Makefile to generate the files from the source is the following. noweave
generates documentation from the noweb source, and notangle generates (gen-
eralized) ‘code’.

18c 〈Makefile 18c〉≡
%.tex: %.nw; noweave -delay -index $< | cpif $@

%.dvi: %.tex;
latex $<
grep ’LaTeX Warning:.*Rerun’ $*.log >/dev/null && latex $< || true
grep ’LaTeX Warning:.*Rerun’ $*.log >/dev/null && latex $< || true

%.pdf: %.tex;
pdflatex $<
grep ’LaTeX Warning:.*Rerun’ $*.log >/dev/null && pdflatex $< || true
grep ’LaTeX Warning:.*Rerun’ $*.log >/dev/null && pdflatex $< || true

%.html: %.nw; noweave -html -filter l2h -index $< > $@

%.ps: %.dvi; dvips -o $@ $<

all: data-def.tex data-def.dtd example.xml

data-def.dtd: data-def.nw
notangle -Rdata-def.dtd $< | cpif $@

example.xml: data-def.nw
notangle -Rexample.xml $< | cpif $@

check: example.xml data-def.dtd
xml-nsgmls -s $<

Makefile: data-def.nw; notangle -t8 -RMakefile $< | cpif $@
Uses s 4b.

18

http://openjade.sourceforge.net/

8 Indexes

Indexing is by sub-page number, i.e. ‘2b’ is the second chunk on page 2.

8.1 Code Chunks

〈beamline 6a〉
〈data acq 12a〉
〈data-def.dtd 17e〉
〈detector 6b〉
〈example 5d〉
〈example.xml 18a〉
〈goniometer 10a〉
〈keywords 5a〉

〈Makefile 18c〉
〈results 16a〉
〈RPCs 5b〉
〈source 8c〉
〈top-level elements 5c〉
〈type entities 4a〉
〈unit entities 4b〉
〈xml-nsgmls 18b〉

8.2 Identifier definitions and usage

Definition points are underlined.

Angstroems: 4b, 8c
beam centre: 7d, 11a, 11d
beam fom: 9b, 9c
beamline: 11b, 11c, 11d
beam stop: 8a, 11a
CDATA: 4a
collect: 15a, 15b, 15c
collect result: 16c, 16d, 16e
dc parameters: 17b, 17c, 17d
degrees: 4b, 8f, 10d, 10e, 10f, 12f,

13
detector: 11a, 11b, 11d
detector type: 6b, 11a, 11d
dispersion: 8e, 9c
distance: 7c, 11a, 11d
divergence: 8f, 9c
div x: 8f
div y: 8f
enum: 4a, 6b, 10a, 10b, 10c, 16a
error message: 16b, 16c, 16e
exposure time: 12d, 15a, 15c, 17b,

17d
gain: 7a, 11a
get beamline parameters: 5b, 5c,

5d
get dc parameters: 16f, 16g, 17a
goniometer: 10g, 11b, 11d
goniometer orientation: 10b, 10g
goniometer type: 10a, 10g
id: 12a, 15a, 15c, 16c, 16e
integer: 4a

kappa: 10e, 10g
key: 5a
keywords: 5a, 11b, 15a
mm: 4b, 6c, 7b, 7c, 7d, 9a
nat: 4a, 12a, 12b
nat one: 4a, 6d, 12e
omega: 10f, 10g
oscillation angle: 12f, 15a, 15c,

17b, 17d
overload: 6d, 11a
passes: 12e, 15a, 15c, 17b, 17d
phi: 10d, 10g, 11d, 16e
phi end: 13, 15a, 15c
phi start: 13, 15a, 15c
polarization: 8d, 9c
radius: 6c, 8a, 11a, 11d
real: 4a, 4b, 7a, 8d, 8e, 9b
roff: 7b, 11a
rotation axis: 10c, 10g
s: 4b, 12d, 18c
scan: 15a, 15c
slits: 9a, 9c
start number: 12b, 15a
status: 16a, 16c, 16e
template: 14, 15a, 15c, 17b, 17d
toff: 7b, 11a
utf-8: 4a, 5a, 12c, 14, 16b
value: 5a
wavelength: 8c, 9c, 11d
x: 7d, 8a, 11d
y: 7d, 8a, 11d

19

	Preamble
	Scope
	Presentation
	Naming

	Data types and units
	Basic types
	Units
	Extensibility---keywords

	`Beamline' parameters
	Detector
	Detector intrinsics

	Detector geometry
	Source
	Goniometer
	Queries
	Detector element
	Beamline group

	Data collection RPC
	Data collection parameters
	Image filename template
	Whole RPC
	Results

	Data Collection Query
	Assembled DTD
	XML test/example &c
	Indexes
	Code Chunks
	Identifier definitions and usage

